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Optimization and control of complex unsteady flows remains an important challenge due to the large cost 
of performing a function evaluation, i.e. a full computational fluid dynamics (CFD) simulation. Reducing 
the number of required function evaluations would help to decrease the computational cost of the overall 
optimization procedure. In this article, we consider the stochastic derivative-free surrogate-model based Dynamic 
COordinate search using Response Surfaces (DYCORS) algorithm and propose several enhancements: First, the 
gradient information is added to the surrogate model to improve its accuracy and enhance the convergence rate 
of the algorithm. Second, the internal parameters of the radial basis function employed to generate the surrogate 
model are optimized by minimizing the leave-one-out error in the case of the original algorithm and by using 
the gradient information in the case of the gradient-enhanced version. We apply the resulting optimization 
algorithm to the minimization of the total pressure loss through a linear cascade of blades, and we compare the 
results obtained with the stochastic algorithms at different Reynolds numbers with a gradient-based optimization 
algorithm. The results show that stochastic optimization outperforms gradient-based optimization even at very 
low 𝑅𝑒 numbers, and that the proposed gradient-enhanced version improves the convergence rate of the original 
algorithm. An open-source implementation of the gradient-enhanced version of the algorithm is available.
1. Introduction

Progress in computational capabilities during the past decades have 
allowed computational fluid dynamics (CFD) to become an ever more 
present tool in the description and the prediction of complex un-

steady flows. However, the computational cost associated with such 
high-fidelity simulations precludes them from being routinely used in 
state-of-the-art optimization algorithms, without resorting to reduced 
order models. Thus, the development of strategies that reduce the 
number of function evaluations, i.e. CFD simulations, in such opti-

mization algorithms is crucial to achieve an acceptable computational 
cost.

Optimization algorithms generally fall under two main categories: 
(i) gradient-based, or (ii) derivative-free methods. Gradient methods 
rely on the value of local derivatives to identify a descent direction. This 
derivative is most commonly calculated using analytical expressions 
or finite differences. Both strategies are inapplicable to high-fidelity 
simulations: analytical expressions are usually not available and finite 
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difference becomes very expensive in the case of unsteady high-fidelity 
simulations, and is susceptible to noise. Alternatively, gradient infor-

mation can be extracted using adjoint-based algorithms, which was 
pioneered by Pironneau in [1]. Adjoint-based optimization has been 
widely used in fluid mechanics, from areas dominated by linear dy-

namics (e.g. acoustics and thermo-acoustics [2,3]), to nonlinear systems 
(e.g. analysis of high-lift airfoils, mixing enhancement and minimal 
seeds for transition to turbulence [4–6]). Recently, their application to 
more complex flow regimes, such as reactive and interfacial flows have 
also been investigated [7–9]. However, as demonstrated by [7], the ob-

jective function encountered in such flows can have multiple minima, 
rendering the application of gradient methods difficult. In addition, the 
presence of turbulence makes the gradient-based approach inadmissi-

ble in many complex flow scenarios. Derivative-free methods elevate 
these challenges and have been applied successfully to optimization in 
fluid mechanics [10,11]. Their main drawback, however, is the require-

ment for many function evaluations, which proves to be too costly when 
dealing with cases of practical interest.
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Due to these disadvantages, the application of these methods to op-

timization problems involving high-fidelity unsteady simulations is not 
straightforward. A suitable alternative for cases with expensive func-

tion evaluations is one that is based on a response surface model (also 
known as a surrogate model or a meta-model), which is, in essence, 
an inexpensive approximate model of the underlying expensive func-

tion. Performing the optimization procedure on a surrogate surface 
greatly reduces the number of calls to the expensive high-fidelity model. 
Surrogate model optimization has been used extensively to identify 
promising points for function evaluations [12–15] using different in-

terpolation techniques that have been proposed, e.g. Least Squares (LS) 
[16], Kriging [17], Radial Basis Functions (RBF) [18] and Support Vec-

tor Regression (SVR) [19]. The most promising point on the surrogate 
model can be determined by several techniques, such as the Adaptive 
Response Surface Method (ARSM) [20], Efficient Global Optimization 
(EGO) [21] and DYCORS [22], to name a few.

Although surrogate model optimization reduces the number of ex-

pensive function calls dramatically, it still suffers from the curse of 
dimensionality, especially when the number of design variables in-

creases [23]. In addition, typical algorithms still require a large number 
of function evaluations to be applicable to the problems of practical in-

terest. In order to ameliorate these restrictions, gradient information 
can be incorporated into the surrogate model. Two main approaches 
are (i) constructing the surrogate surface using the gradient as well as 
the local function value [24,25] or (ii) using multiple start algorithms 
[26,27]. Both approaches show promising results, suggesting that a ju-

dicious combination of derivative-free and gradient-based methods can 
lead to an efficient procedure that converges to the global minimum 
with a limited number of expensive function evaluations. Gradient-

enhanced surrogates have already been used in optimization algorithms 
in different fields. Gradient-enhanced Kriging is probably the most used 
gradient-enhanced surrogate model in the computational fluid mechan-

ics community. It has been successfully tested on different problems 
[28–30]. The benefits of adding the gradient, in this context, have 
been recently quantified rigorously by [31]. However, as stated in [30], 
the inversion of the correlation matrix becomes expensive, in terms of 
memory, as the number of dimensions and sampling points increases 
and therefore it is not suitable for very high dimensional problems. 
Gradient-enhanced RBF has also been employed in surrogate-based op-

timization. Some early examples include the work in [24], where both 
RBF and gradient-enhanced Kriging are compared to gradient-based al-

gorithms in 6-dimensional problems, showing that gradient-enhanced 
kriging provides the best results. RBF and gradient-enhanced RBF are 
also compared in [32] in the context of shape optimization with 24-

dimensional control parameters, where Euler equations are used. In 
[33], a 2-dimensional shape optimization is performed comparing again 
Kriging and RBF. These studies while informative consider either the 
optimization of a low-dimensional parameter-space and/or simplified 
underlying flow equations. Therefore, further analysis on the influence 
of dimensionality and functions landscape is required to assess the suit-

ability of gradient-enhanced RBFs in the context of surrogate-based 
optimization of unsteady flow regimes and high-dimensional parame-

ter space. This is the objective of the work presented here.

In this study, the DYCORS algorithm [34] is adopted as the basis 
of the surrogate model optimization procedure. This algorithm is par-

ticularly attractive due to its fast convergence to the global minimum 
in a high-dimensional parameter space. This characteristic is necessary 
in applications of interest to CFD, since the control function is most 
commonly a parametrized/discretized function, distributed in space. 
To our best knowledge, this work presents one of the first applica-

tions of DYCORS to unsteady flows. We aim to provide a measure of 
its performance at different regimes such as steady, unsteady and non-

deterministic flow. In addition, the use of local gradient information is 
proposed to improve the accuracy of the surrogate model, resulting in 
a gradient-assisted surrogate model optimization that aims at reducing 
2

the number of required function evaluations to reach the global op-
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timum. Moreover, the optimization of the internal parameters of the 
surrogate model has been included in the optimization procedure to 
further enhance its accuracy. The resulting optimization algorithm is 
applied to control the unsteady flow around a linear cascade of com-

pressor rotor blades.

The paper is organized as follows. First, in Section 2 a detailed de-

scription of the stochastic optimization algorithm is provided and the 
enhancements to the original algorithm are highlighted. Then, its per-

formance is assessed in the context of numerical flow simulations. The 
governing equations and the numerical schemes of the underlying flow 
solver are briefly presented in Section 3. In Section 4, an application 
of this algorithm to the reduction of total pressure loss through a lin-

ear cascade of blades is presented and the results are discussed. Finally, 
we provide in Section 5 concluding remarks and suggestions for future 
work.

2. Optimization framework

The Dynamic Coordinate Search using Response Surfaces (DYCORS) 
algorithm developed in [34] is first described in this section, and then 
extended to include derivative information. This algorithm is chosen 
owing to its performance in a high-dimensional parameter space. Once 
the algorithm is initialized by evaluating the objective function at se-

lected initial sampling points, it produces a sequence of candidate so-

lutions until a stop criterion is met. At each iteration, the following 
operations are performed:

• Construction of the surrogate model using information from 
previously-evaluated points, Fig. 1(a).

• Generation of trial points and evaluation using the surrogate 
model, Fig. 1(b)

• Selection of best candidate point among the trial points, Fig. 1(c).

• Evaluation of the objective function at the best candidate point, 
Fig. 1(d).

This procedure is illustrated in Fig. 1, where the one-dimensional Rast-

rigin function [35], a commonly used function to benchmark algorithms 
in the presence of a large number of local minima, is considered. These 
steps will be presented below in more detail.

2.1. Construction of the surrogate model

In the following, the interpolation technique underlying the surro-

gate model in the DYCORS algorithm is briefly discussed. This pro-

cedure is then modified to include gradient information and a new 
criterion is introduced to determine the internal parameters of the in-

terpolant.

2.1.1. Radial basis function interpolation

The DYCORS algorithm relies on Radial Basis Functions (RBF) to 
build the surrogate model. Consider an objective function 𝑓 ∶ℝ𝑑 →ℝ, 
where 𝑑 is the number of parameters. Taking a set of 𝑛 points in the 
parameter space 𝐱1, … , 𝐱𝑛 ∈ ℝ𝑑 and the corresponding values of the 
objective function 𝑓 (𝐱1), … , 𝑓 (𝐱𝑛), the value of the objective function 
at a point 𝐲 can be approximated by the RBF interpolant [18]

𝑠𝑛(𝐲;𝐱,𝝀, 𝐥) =
𝑛∑
𝑖=1
𝜆𝑖𝜙

(
𝑟(𝐲,𝐱𝑖, l)

)
, (1)

where 𝜙(⋅) is a kernel function, 𝝀 is a vector containing the coefficients 
of the interpolant and 𝑟(r𝑝, r𝑐 , l) =

‖‖‖diag(𝐥−1)(r𝑝 − r𝑐
)‖‖‖ where ‖⋅‖ is the 

Euclidean norm, r𝑝 is the point where the radial basis function is going 
to be evaluated, r𝑐 is the center of the radial function and 𝐥 ∈ ℝ𝑑 is a 
vector of internal parameters corresponding to the spatial length-scale 
of the kernel function in each parameter direction. A wide variety of 

kernel functions exist, and some of the most popular choices, e.g. the 
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Fig. 1. Illustration of the main steps performed during one iteration of DYCORS algorithm. The one-dimensional Rastrigin function is used as the objective function 

defined on the domain 𝑥 ∈ [−2, 2].

Table 1

Kernel functions, with 𝑟 being a positive scalar de-

noting the distance between a point and the center 
of the radial basis function and 𝜈 an internal pa-

rameter of the Matérn kernel referring to the order 
of the modified Bessel function 𝐾𝜈 .

Function Expression

Exponential 𝜙(𝑟) = exp
(
− 𝑟

2

2

)
Matérn 𝜙(𝑟) = 21−𝜈

Γ(𝜈)

(√
2𝜈|𝑟|)𝜈 𝐾𝜈 (√2𝜈|𝑟|)

Cubic 𝜙(𝑟) = 𝑟3

exponential, the Matérn [36] and the cubic kernels, are presented in 
Table 1.

The weights 𝝀 are determined by setting the value of the interpolant 
to that of the objective function at every 𝐱𝑖, i.e. 𝑠𝑛(𝐱𝑖; 𝐱, 𝝀, 𝐥) = 𝑓 (𝐱𝑖). 
However, depending on the kernel choice, the resulting system of equa-

tions can be conditionally positive definite [37]. The interpolant given 
in Eq. (1) is then modified and polynomials 𝑝 of degree up to 𝑚 in 𝑑
unknowns, i.e. 𝑝 ∈Π𝑑

𝑚
are added to the right-hand side; see [37] for fur-

ther details. We set 𝑚 = 1 for all the kernels, following [34]. The RBF 
interpolant then reads

𝑛∑

3

𝑠𝑛(𝐲;𝐱,𝝀, 𝐥, 𝐜) =
𝑖=1
𝜆𝑖𝜙(𝑟(𝐲,𝐱𝑖, l)) + 𝑝(𝐲, 𝐜), (2)
where 𝐜 = [𝑐1, … , 𝑐𝑑+1]𝑇 is the vector containing the coefficients of the 
polynomials. To uniquely determine these coefficients, the above sys-

tem of equations is augmented by enforcing orthogonality between the 
coefficients of the kernel functions and the polynomial space Π𝑑

𝑚
, i.e.

𝑛∑
𝑖=1
𝜆𝑖𝑞

𝑗

𝑖
= 0, for 𝑗 = 1,… , 𝑑 + 1, (3)

where 𝑞1
𝑖
= 1 and 𝑞𝑗

𝑖
= 𝑥𝑗−1

𝑖
. Finally, the coefficients 𝝀 and 𝐜 are deter-

mined by the following linear system(
𝝫 𝗣
𝗣𝑇 𝟬

)(
𝝀

𝐜

)
=
(
𝐟
𝟎

)
, (4)

where, 𝑖𝑗 = 𝜙(𝑟(𝐱𝑖, 𝐱𝑗 , l)) for 𝑖, 𝑗 = 1, … , 𝑛 denotes the kernel matrix, 
𝗣𝑖 = [1, 𝑥1

𝑖
, … , 𝑥𝑑

𝑖
] for 𝑖 = 1, … , 𝑛 is the polynomial matrix, and 𝖿𝑖 =

𝑓 (𝐱𝑖) for 𝑖 = 1, … , 𝑛 is a vector that contains the function values at the 
evaluated points.

2.1.2. Gradient-enhanced radial basis function interpolation

We now turn the attention to Gradient-enhanced Radial Basis Func-

tions (GRBF). The surrogate model can be improved by including local 
gradient information such that both the function 𝑓 and its gradient 𝐠
are matched at the evaluated points. With a more accurate surrogate 
model, the evaluation of the trial points should provide function val-

ues closer to the exact values, thereby, improving the convergence rate 

of the algorithm. In this case, additional basis functions are introduced 
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Fig. 2. Interpolation of the one-dimensional Rastrigin function (blue solid line) using 6 sample points (black points) (a) RBF with an exponential kernel and internal 
parameters 𝑙 = 1.0 (orange dashed line) and 𝑙 = 0.1 (green dash dotted line), (b) GRBF with an exponential kernel and internal parameters 𝑙 = 1.0 (orange dashed 
line) and 𝑙 = 0.1 (green dash dotted line). (For interpretation of the colours in the figure(s), the reader is referred to the web version of this article.)
to include the local gradient information into the surrogate model. Fol-

lowing [38,39,33], the interpolation now reads

𝑠𝑛(𝐲;𝐱,𝝀, l,c) =
𝑛∑
𝑖=1
𝜆𝑖𝜙(𝑟(𝐲,𝐱𝑖, l)) +

𝑑∑
𝑗=1

𝑛∑
𝑖=1
𝑐
𝑗

𝑖

𝜕𝜙

𝜕𝑟
𝑗
𝑝

|||𝑟(𝐲,𝐱𝑖 ,l), (5)

where the polynomial term in Eq. (2) has been replaced by a term con-

taining the first derivative of the kernel. Note that the size of the vector 
of coefficients 𝐜 is now dependent on the number of evaluated points 
with a dimension of 𝑛𝑑, thus, an additional set of equations has to be 
included to uniquely determine the coefficients. To this end, we differ-

entiate Eq. (5)

𝜕𝑠𝑛

𝜕𝑟𝑘
𝑐

|||(𝐲;𝐱,𝝀,l,c) = 𝑛∑
𝑖=1
𝜆𝑖
𝜕𝜙

𝜕𝑟𝑘
𝑐

|||𝑟(𝐲,𝐱𝑖 ,l) +
𝑑∑
𝑗=1

𝑛∑
𝑖=1
𝑐
𝑗

𝑖

𝜕2𝜙

𝜕𝑟
𝑗
𝑝𝜕𝑟

𝑘
𝑐

|||𝑟(𝐲,𝐱𝑖,l), (6)

where both the first and the second derivatives of the kernel function 
appear. Using Eqs. (5) and (6), the coefficients 𝜆𝑖 and 𝑐𝑗

𝑖
are determined 

by the solution of the following linear system(
𝝫 −𝝫𝑑

𝝫𝑇
𝑑

𝝫𝑑𝑑

)(
𝝀

𝐜

)
=
(
𝐟
𝐠

)
, (7)

where 𝐠𝑖 = [𝑔(𝐱𝑖), … , 𝑔(𝐱𝑖)]𝑇 , 𝑖 = 1, … , 𝑛, is the vector with the deriva-

tives of 𝑓 at the evaluated points. This system is analogous to Eq. (4)

and is guaranteed to be positive definite [39]. The matrix with the poly-

nomial terms and the zero matrix of the original RBF formulation have 
been replaced by the first and the second order derivatives of the kernel 
matrix 𝝫𝑑 and 𝝫𝑑𝑑 , respectively. The derivatives of the kernel matrix 
can be computed via chain rule,

𝑑𝑖𝑗,𝑘 =
𝜕𝜙

𝜕𝑟𝑘
𝑐

|||𝑟(𝐱𝑖 ,𝐱𝑗 ,l) = 𝜕𝜙

𝜕𝑟

|||𝑟(𝐱𝑖,𝐱𝑗 ,l) 𝜕𝑟𝜕𝑟𝑘𝑐 |||(𝐱𝑖 ,𝐱𝑗 ,l), (8)

𝑑𝑑𝑖𝑗,𝑘𝑙 =
𝜕2𝜙

𝜕𝑟𝑘
𝑐
𝜕𝑟𝑙
𝑝

|||𝑟(𝐱𝑖,𝐱𝑗 ,l)
= 𝜕2𝜙

𝜕𝑟2
|||𝑟(𝐱𝑖 ,𝐱𝑗 ,l) 𝜕𝑟𝜕𝑟𝑘𝑐 |||(𝐱𝑖 ,𝐱𝑗 ,l) 𝜕𝑟𝜕𝑟𝑙𝑝 |||(𝐱𝑖 ,𝐱𝑗 ,l) + 𝜕𝜙

𝜕𝑟

|||𝑟(𝐱𝑖 ,𝐱𝑗 ,l) 𝜕2𝑟

𝜕𝑟𝑘
𝑐
𝜕𝑟𝑙
𝑝

|||(𝐱𝑖 ,𝐱𝑗 ,l).
(9)

The first derivative of the kernel matrix 𝝫𝑑 has a dimension of 𝑛𝑑 × 𝑛
while the second derivative of the kernel matrix 𝝫𝑑𝑑 has a dimension 
of 𝑛𝑑 × 𝑛𝑑. They can be constructed according to

𝝫𝑑 =
⎛⎜𝑑11,1 … 𝑑11,𝑑 … 𝑑1𝑛,𝑑

⋮ ⋱ ⋮ ⋱ ⋮
⎞⎟ , (10)

𝝫𝑑

2.1

mo∑𝑑

𝑖

inp

sur

sid

pon

int

the

Th

sur

int

pro

𝑙. M
the

sul

is h
add

pro

2.1

of 
ma

opt

in 
we

im

par

pro

mi

wh

poi

poi

ent
4

⎜⎝𝑑𝑛1,1 … 𝑑𝑛1,𝑑 … 𝑑𝑛𝑛,𝑑
⎟⎠
𝑑 =

⎛⎜⎜⎜⎜⎜⎝

𝑑𝑑11,11 … 𝑑𝑑11,1𝑑 … 𝑑𝑑1𝑛,1𝑑
⋮ ⋱ ⋮ ⋱ ⋮

𝑑𝑑11,𝑑1 … 𝑑𝑑11,𝑑𝑑 … 𝑑𝑑1𝑛,𝑑𝑑
⋮ ⋱ ⋮ ⋱ ⋮

𝑑𝑑𝑛1,𝑑1 … 𝑑𝑑𝑛1,𝑑𝑑 … 𝑑𝑑𝑛𝑛,𝑑𝑑

⎞⎟⎟⎟⎟⎟⎠
. (11)

.3. Comparison of the interpolants constructed using RBF and GRBF

In this section, we provide a comparison between RBF and GRBF 
dels. We consider the Rastrigin function, given by 𝑓 (𝐱) = 10𝑑 +
=1[𝑥

2
𝑖
− 10 cos(2𝜋𝑥𝑖)], where 𝑑 is the number of dimensions of the 

ut vector. To motivate the optimization of the internal parameters, 
rogate models with different choices of internal parameters are con-

ered to highlight their effect in the approximation accuracy.

In the one-dimensional case, Fig. 2, interpolants based on the ex-

ential kernel at six sample points and two different values of the 
ernal parameter, 𝑙 = 1.0 and 𝑙 = 0.1, are considered. Fig. 2(a) presents 
 results using RBF whereas Fig. 2(b) shows the results using GRBF. 
is figure illustrates the effect of including gradient information in the 
rogate model for different values of the internal parameter 𝑙. The 
erpolation achieved using GRBF with 𝑙 = 1 shows a considerable im-

vement with respect to the one given by RBF with the same value of 
oreover, in both cases a large difference can be observed between 

 interpolation obtained with 𝑙 = 1 and that with 𝑙 = 0.1. These re-

ts suggest that the accurate construction of the surrogate using GRBF 
ighly dependent on the value of the internal parameter, otherwise 
ing the gradient information does not lead to a considerable im-

vement of the resulting interpolant.

.4. Optimization of the internal parameters

As shown in the previous section, the value of the internal parameter 
the kernel function must be properly set to reach optimal perfor-

nce in RBF and GRBF surrogate models. This can be achieved by 
imizing the leave-one-out error 𝑒𝑙𝑜𝑜 in the case of RBF as described 
[40]. In the case of GRBF, a different approach must be followed as 
 will show in this section. In this work, we make use of an efficient 
plementation of the leave-one-out error from [33], where the internal 
ameter is determined by the solution of the following optimization 
blem,

n 𝑒loo(𝐥, 𝜈), 𝑒loo(𝐥, 𝜈) =
𝐚𝑇𝗛(𝐥, 𝜈)−2𝐚

𝑛 diag(𝗛(𝐥, 𝜈)−2)
s.t. 𝜅(𝗛) < 1

10𝜖
,

(12)

ere 𝑒loo is the leave-one-out error, 𝑛 is the number of evaluated 
nts, vector 𝐚 contains the values of the function at the evaluated 
nts in the case of RBF and the values of the function and its gradi-

 in the case of GRBF, 𝜅 is the condition number of a matrix, 𝜖 is the 

machine precision, and 𝗛 can be defined as
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Fig. 3. Leave-one-out error as function of the internal parameter for (a) one-dimensional Rastrigin function and (c) two-dimensional Rastrigin function and condition 
number of the full kernel matrix for (b) one-dimensional Rastrigin function and (d) two-dimensional Rastrigin function. Results for the exponential kernel are plotted 
in blue (dashed line RBF and solid line GRFB), for the Matérn kernel are plotted in orange (dashed line with circles RBF and solid line with diamonds GRBF) and 
for the cubic kernel are plotted in grey (dashed line with triangles RBF and solid line with squares GRBF). The dashed black line represents the constraint on the 
condition number with a value of 1∕(10𝜖).
𝗛 =𝝫, (13)

in the case of RBF, and as

𝗛 =
(

𝝫 −𝝫𝑑

𝝫𝑇
𝑑

𝝫𝑑𝑑

)
, (14)

in the case of GRBF. The constraint on the condition number of the 
full kernel matrix 𝗛 has been added to the optimization to ensure the 
smoothness of the surrogate model. The maximum value for the condi-

tion number is set to 1∕10𝜖, where 𝜖 is the machine precision.

Fig. 3 displays the leave-one-out error and the condition number as 
a function of the internal parameter for two different cases and three 
kernel functions. Figs. 3(a,b) show the results for the one-dimensional 
Rastrigin function evaluated at 10 points and Figs. 3(c,d) present the re-

sults for the two-dimensional Rastrigin function evaluated at 20 points. 
In the latter, the internal parameter is kept constant in one direction and 
varies in the other. As it can be seen, the leave-one-out error presents 
a smooth behaviour for the RBF kernels when the constraint is satis-

fied, however when applied to GRBF kernels, the figure shows several 
peaks even though the condition number is below the constraint. In 
view of this, an optimal value for the internal parameter cannot be ob-

tained through the optimization of the leave-one-out error in the case of 
GRBF surrogates. To circumvent this limitation, we propose instead to 
set the internal parameter 𝑙 to the inverse of the average absolute value 
of the derivatives in each direction obtained during the previous iter-

ations of the optimization procedure when a gradient-enhanced kernel 
is employed. Directions with steeper derivatives are expected to feature 
smaller spatial scales, and therefore, the widths of the kernel can be 
reduced accordingly to approximate the objective function more accu-

rately. Eq. (15) gives the expression used to compute the value of the 
5

internal parameter in this case,
𝐥 =
{

1
[|𝐠|(𝑥1)|,… , |𝐠(𝑥𝑑 )|]

}
. (15)

2.2. Stochastic search algorithm

In this section, we provide a description of the steps that are carried 
out to perform an optimization using the DYCORS algorithm.

DYCORS is a derivative-free stochastic optimization algorithm 
adapted to the optimization of bound constrained high-dimensional 
expensive black-box functions. If more complex constraints are needed, 
they can be added as a penalization term directly into the objective 
function 𝑓 . It was developed as a modification of the Local Metric 
Stochastic Response Surface (LMSRS) method [34] by introducing ideas 
from the Dynamically Dimensioned Search (DDS) method [41]. In its 
original form, the algorithm does not rely on the gradient of the objec-

tive function to reach a minimum and therefore has no information on 
the shape of the objective function apart from its value for a given set 
of control parameters. The algorithm is detailed in Algorithm 1 as well 
as Algorithms 2-4 given in Appendix C. The main steps of the algorithm 
are described below:

1-Initialization: The algorithm performs a fixed number of function 
evaluations 𝑁max. It is initialized by evaluating the objective function 
𝑓 defined on the hypercube  = [𝑎𝑑, 𝑏𝑑 ] ⊆ ℝ𝑑 at a number of 𝑚 given 
initial sampling points . The initial sampling points can be generated 
by means of Latin Hypercube Sampling techniques. This method cre-

ates an optimal distribution through the full hypercube [42]. In this 
study, an enhanced Latin Hypercube Sampling based on [43] is used 
to generate the initial sampling points . This method ensures that the 
minimum distance between the points is 𝑑𝑜𝑝𝑡 = 𝑚∕ 𝑑

√
𝑚, and that each 

region of the hypercube has an equal representation on .

2-Construction of the surrogate model: At every iteration, a surrogate 

model is built following the procedure discussed in Section 2.1. The 
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Algorithm 1: (G)-DYCORS algorithm.

Input: Real valued black-box function, 𝑓 defined on  = [𝑎𝑑 , 𝑏𝑑 ] ⊆ℝ𝑑

Real valued black-box function, 𝑔 defined on  = [𝑎𝑑 , 𝑏𝑑 ] ⊆ℝ𝑑

in case of G-DYCORS

Maximum number of function evaluations, 𝑁max
Initial and minimum standard deviations, 𝜎0 and 𝜎𝑚
Number of trial points, 𝑘
Response surface model, 𝜙
Interpolant, 𝑠𝑛
Internal parameter of the kernel, 𝐥
Initial sampling points,  =

{
𝐱1,… ,𝐱𝑚

}
Weight pattern, 𝚼 =

{
Υ0,Υ1,Υ2,Υ3

}
Limits for number of consecutive failed and successful iterations, 
𝜏f and 𝜏s
Number of iterations without optimizing the internal parameter, 
𝑛ip

Result: Best point encountered, 𝑥best

Initialize algorithm: 𝑚 = , 𝑓 (𝐱), (𝑔(𝐱)) ∶ 𝐱 ∈𝑚

Select best evaluated point: 𝑓best = 𝑓 (𝐱best )
Initialize standard deviation and counters: 𝜎𝑛 = 𝜎0, 𝑛 =𝑚, 𝐶f = 0 and 
𝐶s = 0

while 𝑛 <𝑁max do
Construct the surrogate model: Compute 𝝀 and 𝐜 following 
Sections 2.1.1 and 2.1.2

Generate and evaluate trial points: Algorithm 2: 
trial_points(𝑛, 𝑘, 𝜎𝑛, 𝑠𝑛, 𝑛, 𝝀, 𝐜)

Select best candidate point: Algorithm 3: 
select_next_point(𝑛, 𝚼, 𝑛, y𝑛,𝑗 , 𝑠𝑛(y𝑛,𝑗 ))

Evaluate function (and gradient): Compute 𝑓 (𝐱𝑛+1) , (𝑔(𝐱𝑛+1))
Update information: Algorithm 4: 
update_info(𝑛, 𝐱best , 𝑓best , 𝐱𝑛+1, 𝑓𝑛+1, 𝐶f , 𝐶s, 𝜏f , 𝜏s, 𝜎𝑛, 𝑛)

Optimize internal parameters: following Section 2.1.4

end

coefficients of the interpolant 𝝀 and c are given by the solution of the 
linear systems in Eq. (4) (RBF case) or (7) (GRBF case).

3-Generation of trial points and evaluation using the surrogate 
model: Following Algorithm 2, the trial points are generated by per-

turbing the location of the evaluated point with the minimum function 
value in randomly selected directions. As the optimization procedure 
advances, the probability of perturbing a direction is reduced according 
to

𝜑(𝑛) = 𝜑0

(
1 − ln (𝑛−𝑚+ 1)

ln (𝑁max −𝑚)

)
, (16)

where 𝑛 is the number of function evaluations that have already been 
performed, 𝑚 is the size of the initial set of points, 𝑁𝑚𝑎𝑥 is the total 
number of function evaluations to be performed and 𝜑0 is a constant 
that will be defined later. Once the perturbed coordinates have been se-

lected, 𝑘 trial points are generated by means of a normal distribution 
centered at the current minimum valued point with standard deviation 
𝜎𝑛. Due to the low computational cost of evaluating the trial points us-

ing the surrogate model, thousands of evaluations can be performed at 
a negligible cost. The value of the standard deviation varies depending 
on the number of consecutive failed or successful iterations, where a 
failed iteration means that the minimum valued point has not changed 
in the last iteration and a successful iteration means the algorithm has 
been able to improve the minimum. The initial value of the standard 
deviation is set to 0.2 times the distance between boundaries of the 
hypercube in every direction. If 𝜏𝑓 consecutive failed iterations are per-

formed, the standard deviation is divided by 2. In case 𝜏𝑠 consecutive 
successful iterations are carried out, the standard deviation is multi-

plied by 2. If the standard deviation falls below a given threshold 𝜎𝑚, 
the algorithm is completely reinitialized to escape from local minima, 
6

by keeping just the information of the best evaluated point so far. Once 
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the trial points have been generated, the surrogate model is evaluated 
at these points using Eq. (2).

4-Selection of best candidate point among the trial points: In or-

der to select the next point that will be evaluated using function 𝑓 , we 
have to apply a selection criteria to the trial points. Algorithm 3 pro-

vides the steps that are required to select this point. Using this selection 
criteria two different scores are given to each trial point. On the one 
hand, the first score (RBF score) takes into account the value of the sur-

rogate model at the trial points, where the lowest value will get the 
best score. On the other hand, the second score (distance score) takes 
into account the distance between each trial point and all the already 
evaluated points, where the higher distances get better scores. The two 
scores are summed and the trial point with the best overall score is 
chosen as next point to be evaluated. Depending on the number of the 
current iteration, one of the scores may be given a greater weight in the 
overall score. The weight for the first score is rolled through the val-

ues 𝚼 =
{
Υ1,Υ2,Υ3,Υ4

}
whereas the weights for the second score are 

one minus the value of the first score. By employing these scores, we 
ensure that different regions of the hypercube are populated, a manda-

tory criterion to avoid problems with singular matrices when building 
the surrogate model. This way of proceeding also helps to escape from 
local minima.

5-Evaluation of the objective function at the best candidate point: 
After selecting the best candidate point, the objective function (and 
its gradient in the gradient-enhanced case) is evaluated using the CFD 
solver. This is the most expensive step in the whole procedure as it re-

quires to perform a full CFD simulation.

6-Update information: After evaluating the objective function, de-

pending on the value obtained after, the counters that keep track of 
the consecutive failed and successful iterations can either be increased 
by one or set to zero, 𝐶f and 𝐶s respectively. If they reach the values 𝜏𝑓
or 𝜏𝑠, respectively, the value of the standard deviation used to generate 
the trial points 𝜎𝑛 is modified accordingly. Afterwards, the set of evalu-

ated points 𝑛 and the iteration number 𝑛 are updated. These steps are 
indicated in Algorithm 4.

7-Optimization of the internal parameters: Following Section 2.1.4, 
the internal parameters of the kernel function are optimized to improve 
the accuracy of the surrogate model. Every 𝑛ip iterations of the algo-

rithm, a differential evolution optimization algorithm is employed to 
optimize the values according to the leave-one-error [40]. This step was 
not present in the original DYCORS algorithm.

Table 2 presents a summary of all the parameters used in the DY-

CORS algorithm, defined in [22]. The number of initial points 𝑚 is fixed 
to 𝑚 = 𝑑 +1 to ensure that singular matrices do not appear when build-

ing the RBF, although a higher value may be employed. The value of 
𝜑0 is set such that in the first iteration of low-dimensional optimization 
problems (𝑑 < 20) all the coordinates are perturbed, whereas for higher 
dimensional problems, on average 20 coordinates are perturbed at a 
time. The justification for this value of 𝜑0 is that the probability of im-

proving the solution is increased if only a small amount of the variables 
are perturbed even at the beginning of the optimization procedure. The 
minimum standard deviation 𝜎𝑚 allows the reduction of the standard 
deviation up to 6 times before the algorithm is restarted to ensure that 
local minima are skipped. The weight pattern 𝚼 starts with a value that 
gives more importance to the distance score and progressively increases 
the importance of the RBF score in the overall score.

2.3. Influence of dimensionality on the performance of the algorithms

In this section, the performance of the two versions of the opti-

mization algorithm is assessed by applying the DYCORS and G-DYCORS 
algorithms to the same functions, using the same kernel with the same 
values of the internal parameters in order to analyze the influence of 

increasing dimensionality.
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Table 2

DYCORS parameters.

Parameter Description Value

𝑚 Number of initial sampling points 𝑑 + 1
𝑘 Number of trial points to be generated min(100𝑑,5000)
𝜑0 Initial probability of perturbing a direction min(20∕𝑑,1)
𝜎0 Initial standard deviation 0.2(𝑏𝑑 − 𝑎𝑑 )
𝜎𝑚 Minimum standard deviation 0.2∕26(𝑏𝑑 − 𝑎𝑑 )
𝜏𝑠 Maximum number of consecutive successful iterations 3
𝜏𝑓 Maximum number of consecutive failed iterations 5
𝚼 Weight pattern in the score of the trial points {0.3,0.5,0.8,0.95}

Fig. 4. Performance on the 𝑛-dimensional Ackley function. The red line is obtained using the DYCORS algorithm and the rest with the G-DYCORS algorithm, 
considering negligible cost of the gradient with respect to a function evaluation (green line), same cost (orange line) and much larger cost as if it was computed 
using finite difference (blue line).
Two different kinds of test functions are considered, corresponding 
to two different scenarios that may appear in fluid mechanics. The first 
function is the 𝑛-dimensional Rosenbrok function, which is defined as

𝑓 (𝐱) =
𝑛−1∑
𝑖=1

[
100

(
𝑥𝑖+1 − 𝑥2𝑖

)2 + (1 − 𝑥𝑖)2
]
, ∀ 𝐱 ∈ℝ𝑛. (17)

The global minimum of this function is located at 𝐱 = [1,… ,1] and for 
𝑛 > 4 some local minima appear. Non-chaotic flows at low Reynolds 
number are expected to have a small number of local minima, which 
do not vary significantly as the number of design parameters increase, 
making the Rosenbrok function a good representative.

Chaotic flows, on the other hand, are expected to present a large 
number of local minima, which increase as new parameters are added. 
The Rastrigin and the Ackley function are selected as representative of 
such flows. The Ackley function is defined as

𝑓 (𝐱) = −20exp
⎛⎜⎜⎝−0.2

√√√√1
𝑛

𝑛∑
𝑖=1
𝑥2
𝑖

⎞⎟⎟⎠− exp

(
1
𝑛

𝑛∑
𝑖=1

cos
(
2𝜋𝑥𝑖

))
+ 20 + exp (1) , ∀ 𝐱 ∈ℝ𝑛. (18)

This function has the global minimum at 𝐱 = [0,… ,0] and a local min-

imum every length unit in every direction, so the number of local 
minima increases exponentially with the number of dimensions, sim-

ilar to the Rastrigin function.

To compare the two algorithms, three different cases are consid-

ered. In the first case, the computational cost of computing the gradient 
is supposed to be negligible with respect to the cost of computing the 
function value. In the second case, the cost of extracting the gradient 
is the same as that of the evaluating the function. Finally, in the third 
case, the cost of computing the gradient is assumed to be 𝑛 times the 
7

cost of computing the function value, as if it was computed using fi-
nite differences. These three cases allow us to cover the different kind 
of scenarios that may arise, when numerically optimising flow prob-

lems. Therefore, we will be able to factor in the computational cost of 
evaluating the gradient.

Fig. 4 shows a comparison of the performance of the DYCORS and 
G-DYCORS algorithms for the Ackley function. The optimization is per-

formed 200 times for the 3-dimensional function, 100 times for the 5-

dimensional function, 50 times for the 11-dimensional function and 25 
times for the 21-dimensional function, since less variability is observed 
between different runs of the algorithm as the number of dimensions 
are increased. The average function value is represented at each equiv-

alent iteration. Since the behaviour observed in the three functions is 
very similar, only the results of the Ackley function are shown here. 
Lack of variability across different functions shows the robustness of 
the algorithm with respect to different flow regimes. This is a consider-

able advantage when applied to unsteady problems, since the presence 
of actuation could easily alter the flow characteristics.

The initial sampling of G-DYCORS, in cases where the cost of extract-

ing the gradient is not negligible, is more costly since the initial number 
of sampling points is kept the same for all algorithms. However Fig. 4

shows that, even using inefficient methods for the computation of the 
gradient, leads to better convergence of the algorithm for small num-

ber of control parameters. As the dimensions of the problem increase, 
the size of the initial sampling increases as well and the performance 
of the gradient-enhanced algorithm deteriorates, and the derivative-

free version is the best for small number of iterations. Afterwards, the 
better interpolation of the gradient-enhanced version improves its con-

vergence rate and it outperforms the derivative-free version. In cases 
where the cost of extracting the gradient is the same as the function 
evaluation, the gradient-enhanced version always outperforms the orig-
inal DYCORS. These results suggest that it is advantageous to use the 
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gradient-enhanced version of the optimization algorithm provided that 
the gradient can be computed efficiently.

3. Governing equations

The flow solver IBMOS (Immersed Boundary Method for Optimiza-

tion and Stability analysis) [44] employed in this study implements 
the projection-based immersed boundary method from [45] for two-

dimensional flows. The governing equations in continuous form

𝜕𝐮
𝜕𝑡

+ 𝐮 ⋅∇𝐮 = −∇𝑝+ 1
𝑅𝑒

∇2𝐮+ ∫


𝐟(𝑠,𝐱)𝛿(𝐱̂ − 𝜉(𝑠)) d𝑠, (19)

∇ ⋅ 𝐮 = 0, (20)

and

𝐮[𝜉(𝑠)] = ∫


𝐮(𝐱̂)𝛿(𝜉(𝑠) − 𝐱̂) d𝐱̂ = 𝐮𝐵(𝑠), 𝑠 ∈ , (21)

are solved on a given domain  together with suitable initial and 
boundary conditions. In the above, 𝐱̂ ∈ , 𝐮, 𝑝, 𝐟(𝑠, 𝐱), 𝐱 and 𝑅𝑒 are, 
respectively, the velocity vector, the pressure, the distributed momen-

tum sources along the boundaries of the solids , the set of control 
parameters that define the boundary force when an actuation wants 
to be applied on the surface, and the Reynolds number. The pressure 
𝑝 and the boundary force 𝐟(𝑠, 𝐱) can be regarded as a set of Lagrange 
multipliers that enforce the incompressibility constraint and the no-slip 
boundary condition or the actuation on , respectively. A staggered-

mesh finite-volume formulation is used to discretize Eqs. (19)-(21) using 
the implicit Crank-Nicolson integration method for the viscous terms 
and the explicit second-order Adams-Bashforth scheme for the advec-

tion terms. The integrals that involve the 𝛿 function are discretized 
using the mollified 𝛿 function from [46]. The resulting discretized gov-

erning equations then are(
𝗔 𝗤
𝗤𝑇 𝟬

)(
𝐪𝑘+1
𝝀

)
=
(
𝗕𝐪𝑘 − 3

2 (𝐪𝑘) + 1
2 (𝐪𝑘−1) + 𝐛𝐜1

𝐫2

)
, (22)

or in compact form

𝑅(𝐪𝑘−2,𝐪𝑘−1,𝐪𝑘,𝐱) = 0. (23)

In the above, 𝐪𝑘 and 𝝀 are the flow field at a given time step and the 
Lagrange multipliers. The reader is referred to [45] for further details 
regarding the various definitions of the matrices 𝗔, 𝗤 and 𝗕, the non-

linear function  (⋅) and the vectors 𝐛𝐜1 and 𝐫2.

3.1. Gradient computation

As mentioned in the introduction, in the context of gradient-based 
optimization there are three different ways of computing the gradient. 
The cheapest way of computing the gradient is by means of analyti-

cal solutions, which are usually inexpensive to compute. In the context 
of computational fluid dynamics, analytical solutions are not readily 
available. The most common numerical alternative is the use of finite 
differences, which require a function call per design parameter and 
quickly becomes very expensive as the number of control variables in-

creases. An efficient alternative of evaluating the gradient is the use 
of adjoint methods, which require solving a system similar to the one 
solved for the objective function. The computational cost of extracting 
the gradient using this alternative varies depending on the governing 
equations, called forward problem in the context of adjoint methods. 
For steady equations, the cost of solving the adjoint system is usually 
smaller than the cost of the forward problem, whereas for unsteady 
problems the cost tends to be roughly the same. The reader is referred 
to [47] for further details on the adjoint method.

Implementing the adjoint system is usually more complicated than 
implementing the forward system, and in some cases, it might be vir-
8

tually impossible. The numerical solver IBMOS (used in this study) 
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Table 3

Grid parameters.

Reynolds [𝑥min , 𝑥max] × [𝑦min , 𝑦max] Δ𝑥min Δ𝑥max Δ𝑦

800 [−4.43,4.62] × [−0.3,0.3] 0.006 0.04 0.006
2000 [−4.43,4.62] × [−0.3,0.3] 0.006 0.04 0.006
4000 [−4.72,4.69] × [−0.3,0.3] 0.0045 0.03 0.0045

allows access to adjoint equations for extraction of the gradients (see 
Appendix A for a more detailed description of the adjoint system corre-

sponding to the unsteady Navier-Stokes equations).

Most black box algorithms do not give access to adjoint-equations, 
however, since a surrogate is available, there would be possibilities to 
compute an approximate gradient in an efficient way (using Neural Net-

works and back-propagation [48], for example). The accuracy needed 
in computing the gradient for this method to remain attractive (when 
applied in the black box sense) is yet to be determined.

4. Results

In this section, we first provide a description of the test cases that are 
employed in the optimization problem. Afterwards, the objective func-

tion and the control parameters are presented. Finally, the results given 
by the different optimization algorithms are discussed and compared.

4.1. Problem description

The flow around a linear cascade consisting of five blades is used 
to assess the effectiveness of the stochastic optimization algorithm de-

scribed in Section 2. The chosen blade profile was developed in [49]

and its aerodynamic characteristics have been extensively investigated 
experimentally and numerically [50–52]. In the following, the stagger 
angle of the blades is set to 22.5◦ and the angle of attack is 32.5◦. Peri-

odic boundary conditions are specified along the vertical direction, the 
velocity components are imposed at the inlet, and a convective outflow 
boundary condition is used at the outlet boundary. A representative 
snapshot of this flow at variable Reynolds numbers, depicted by instan-

taneous levels of vorticity 𝜔𝑧, is shown in Fig. 5.

A linear stability analysis has been performed to determine the crit-

ical Reynolds number. The growth rate of the leading mode for vary-

ing 𝑅𝑒 is shown in Fig. 5, suggesting that the critical Reynolds number 
for this configuration is 𝑅𝑒𝑐 ≈ 750. To assess the efficiency of the opti-

mization algorithm, representative examples around and far from criti-

cality have been chosen at, respectively, 𝑅𝑒 = {800,2000,4000}, shown 
in Fig. 5. At 𝑅𝑒 = 800, which is slightly above the critical Reynolds 
number, the flow presents an instability developing in the wake of the 
blades. As the Reynolds number is increased up to 𝑅𝑒 = 2000, an insta-

bility develops upstream resulting in pairs of vortices shedding from the 
trailing edges of the blades. In this case, stronger interaction between 
the wakes of the different blades is observed, although the wake still 
displays a regular pattern. Finally, at 𝑅𝑒 = 4000, the figure shows vor-

tex shedding from the suction side close to the leading edge. Vorticity 
levels are higher in this case in comparison with the previous Reynolds 
numbers and a stronger interaction between the wakes is displayed, 
which leads to a chaotic behaviour downstream.

Table 3 gives details on the numerical grids that have been used 
at each Reynolds number, consisting of a structured rectangular mesh 
stretched in the horizontal direction in the region around the blades. 
The vertical grid spacing remains uniform across the full computational 
domain. Both 𝑅𝑒 = {800, 2000} use the same grid. Numerical grids with 
larger domain size and finer grid spacing were considered at these 
Reynolds numbers but no significant differences were observed neither 
in the spectrum nor in the spatial structures of the modes obtained with 
the stability analysis and therefore the flow is considered to be well re-

solved. At 𝑅𝑒 = 4000, a refined grid was considered to avoid numerical 

instabilities.
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Fig. 5. Growth rates of the leading modes at different 𝑅𝑒 numbers and instantaneous snapshot showing the vorticity levels at the selected 𝑅𝑒 numbers.

Fig. 6. Example of a representative actuation. (a) presents the tangential velocity as function of the arc-length 𝑠 while (b) shows the actuation (solid blue line) 
superposed to the blade profile (black dashed line).
4.2. Objective function and actuation

We now intend to minimize the total pressure loss through the blade 
by means of an actuation that imposes a tangential velocity on the blade 
surface. The optimization problem can be stated as follows

min (𝐪0,… ,𝐪𝐾,𝐱) s.t. 𝑅(𝐪𝑖−2,𝐪𝑖−1,𝐪𝑖,𝐱) = 0 ∀ 𝑖 ∈ {1,… ,𝐾},

(24)

where 𝐪𝑖 is the state vector at the 𝑖-th time step, 𝐪0 is the initial con-

dition (by convention, 𝐪−1 = 𝐪0), 𝐱 is the set of control parameters, 
𝑅 is the residual of the propagator that allows us to determine 𝐪𝑖 as 
a function of 𝐪𝑖−1 and 𝐪𝑖−2, 𝐾 is the total number of iterations of the 
simulation and  is the objective function. The objective function is the 
defined by the sum of two terms: the average total pressure loss through 
the blade and a penalization term for the actuation. More precisely,

 (𝐪0,… ,𝐪𝐾,𝐱) = Δ𝑝0(𝐪𝐾0 ,… ,𝐪𝐾 ) + 𝛼 ‖‖𝑢𝑡(𝐱)‖‖ , (25)

where 𝐾0 is the index of the first time step that is considered in the 
temporal average of the total pressure loss and 𝛼 is a positive constant 
that penalizes the strength of the actuation. Note that the parameter 
𝐾0 > 1 is set to remove the contribution of the initial transients from 
the cost function. The total number of iterations of the simulations 𝐾 is 
not fixed. Instead, it is updated dynamically at every simulation by ap-

plying the Cauchy criterion [53] to the averaged total pressure loss. The 
Hann windowing function [54] is employed to speed up convergence. 
9

The Cauchy criterion ensures that every simulation has a large enough 
time window and consequently low frequencies are not bypassed. The 
prescribed tangential velocity on the blade surface is given by

𝑢𝑡(𝑠, 𝑡) =
𝑛∑
𝑖=1
𝑎𝑖𝑓 (2𝜋𝑠,2𝜋𝑠𝑖, 𝜎𝑖) cos(𝜔𝑖𝑡+ 𝜙𝑖), (26)

where 𝑠 is the position on the blade surface measured by the arc-

length, 𝑡 is the time, 𝑛 is the number of actuators distributed over 
the surface, 𝑎𝑖 is the amplitude of the actuator, 𝑠𝑖 is the location 
of the maximum velocity imposed by the actuator, 𝜎𝑖 sets the width 
of the actuator, 𝜔𝑖 is the frequency of the actuator and 𝜙𝑖 is the 
phase. The trailing edge corresponds to 𝑠 = 0.5 whereas the leading 
edge corresponds to 𝑠 = 0 on the pressure side and 𝑠 = 1 on the suc-

tion side. Therefore, the pressure side corresponds to values of 𝑠 in 
the range [0, 0.5] and the suction side of the blade corresponds to 
values of 𝑠 in the range [0.5, 1]. Details on function 𝑓 are given in 
Appendix B. The set of control parameters for blade 𝑗 is given by 
𝐱𝑗 = (𝑎1,𝑗 , … , 𝑎𝑛,𝑗 , 𝑠1,𝑗 , … , 𝑠𝑛,𝑗 , 𝜎1,𝑗 , … , 𝜎𝑛,𝑗 , 𝜔1,𝑗 , … , 𝜔𝑛,𝑗 , 𝜙1,𝑗 , … , 𝜙𝑛,𝑗 ). 
An example of a representative actuation with four actuators is shown 
in Fig. 6, where the maximum amplitude of each actuator, without tak-

ing into account the time-dependent term, is considered for the sake of 
clarity.

The flow around the blades is optimized by means of four actu-

ators on each blade. The location of the actuators is constrained so 
that two actuators are located on each side. The maximum width of 
an actuator is fixed to half the arc-length of the blade profile, and 
the minimum to fifty times the minimum grid size to avoid steep 
gradients at the surface. The upper bound on the frequency param-
eters is set to four times the frequency of the leading mode at the 
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Table 4

Optimization results.

𝑅𝑒 = 800 𝑅𝑒 = 2000 𝑅𝑒 = 4000

Methods 𝑓min Δ𝑝0 𝛼 ‖‖𝑢𝑡(𝐱)‖‖ 𝑓min Δ𝑝0 𝛼 ‖‖𝑢𝑡(𝐱)‖‖ 𝑓min Δ𝑝0 𝛼 ‖‖𝑢𝑡(𝐱)‖‖
No actuation 0.2099 0.2099 0.0 0.1071 0.1071 0.0 0.1277 0.1277 0.0

L-BFGS-B 0.1965 0.1882 0.0083 0.1084 0.1072 0.0012 0.1246 0.1245 0.0001

DYCORS 0.1710 0.1648 0.0062 0.1069 0.1068 0.0001 - - -

DYCORS𝑖𝑝 0.1691 0.1625 0.0066 0.1059 0.1057 0.0002 0.1109 0.1105 0.0004

G-DYCORS 0.1981 0.1955 0.0026 0.1060 0.1057 0.0003 - - -

G-DYCORS𝑖𝑝 0.1730 0.1657 0.0073 0.1039 0.1036 0.0003 0.1085 0.1083 0.0002
corresponding 𝑅𝑒 number whereas the lower bound is set to zero. 
The amplitude, location, width, and angular frequency of the actua-

tors are taken the same for every blade, and a difference in phase 
𝜑𝑗 is allowed. More precisely, the phase of the 𝑖-th actuator on the 
𝑗-th blade is given by 𝜙𝑖 + 𝜑𝑗 , and by setting 𝜑1 = 0, the first blade 
is used as reference. The full set of 24 control parameters is then 
𝐱 = (𝑎1, … , 𝑎4, 𝑠1, … , 𝑠4, 𝜎1, … , 𝜎4, 𝜔1, … , 𝜔4, 𝜙1, … , 𝜙4, 𝜑2, … , 𝜑5).

4.3. Performance of optimization strategies

The effectiveness of the gradient-enhanced DYCORS algorithm is 
assessed by comparison against the original derivative-free version of 
DYCORS for simulations at 𝑅𝑒 = {800,2000,4000}. Cases with and 
without optimization of the internal parameters of the kernel are pre-

sented for 𝑅𝑒 = {800,2000}. The gradient-based alternative L-BFGS-B 
[55], which uses a limited memory version of the BFGS algorithm 
[56] to approximate the Hessian matrix is also used at all Reynolds 
numbers to compare the stochastic-based algorithm with the gradient-

based counterpart. All the surrogate model based optimizations for a 
given Reynolds number are initialized using the same initial sampling 
points and the gradient-based optimization is initialized using a ran-

dom point from this initial sample. The optimizations performed using 
the derivative-free version of the DYCORS algorithm are limited to 
𝑁max = 250 iterations, while the optimizations carried out using the 
gradient-enhanced version and the L-BFGS-B algorithm are limited to 
𝑁max = 125 iterations. Therefore, all the optimizations employ the same 
CPU time as the cost of computing the gradient of the objective func-

tion, using our solver, is roughly the same as the cost of performing a 
single function evaluation.

The value of the objective function for the optimal set of control 
parameters, the values of the average total pressure drop, and the pe-

nalization term for each optimization case are given in Table 4, where 
methods with the subscript 𝑖𝑝 indicate the cases with optimized inter-

nal parameters. According to this table, we can see that the gradient-

enhanced version of DYCORS obtains the best results at 𝑅𝑒 = 2000
and 𝑅𝑒 = 4000 while the derivative-free version performs the best at 
𝑅𝑒 = 800. Moreover, updating the internal parameters of the kernel im-

proves the solution in both versions of the algorithm, and as expected 
the GRBF surrogates do not perform satisfactorily when internal param-

eters are not optimized.

Considering the gradient-based algorithm L-BFGS-B, the table shows 
that it presents a performance comparable to that of the stochastic algo-

rithms only at 𝑅𝑒 = 800. At low Reynolds numbers, the gradient-based 
algorithm is expected to provide good results since the probability for 
the presence of multiple local minima is small due to the determinis-

tic nature of the flow. This also implies that the different versions of 
the stochastic algorithms may not show significant differences, since 
the computed gradients may not be too steep, resulting in a comparable 
estimation of the interpolant using either derivative-free or gradient-

enhanced version of the algorithm.

At 𝑅𝑒 = 2000, however, the L-BFGS-B algorithm is not even able to 
improve upon the case without actuation. This behaviour can be ex-

plained by the fact that the objective function is expected to have a 
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larger amount of local minima due to the increase in the chaotic nature 
of flow as the Reynolds number increases, illustrated by comparing the 
vortical structures shown in Fig. 5. The presence of multiple local min-

ima degrades the performance of gradient-based algorithms which are 
prone to get stuck in local minima. Also, presence of steeper gradients in 
the objective function means that derivative-free surrogates should not 
be able to properly interpolate the objective function and that adding 
the gradient information should improve the construction of the inter-

polant, resulting in the superior performance of the gradient-enhanced 
version of the stochastic algorithm.

4.3.1. 𝑅𝑒 = 800
Fig. 7 displays the results obtained at 𝑅𝑒 = 800. First, Fig. 7(a) shows 

the convergence history of the objective function as a function of the 
number of iterations for each optimization performed at this Reynolds 
number. It can be seen that introducing the gradient in the surrogate 
model enhances the convergence rate of the algorithm as expected. This 
figure also demonstrates that an improvement is obtained when opti-

mizing the internal parameters of the kernel, specially in the gradient 
enhanced version of the algorithm. Fig. 7(b) shows the same conver-

gence history plot but taking into account the computational cost of the 
optimization instead of the number of iterations performed. This is ac-

complished by multiplying the abscissa axis by a factor of 2 in cases 
where the optimization is performed using the gradient information: 
G-DYCORS, G-DYCORS𝑖𝑝, and L-BFGS-B algorithms.

In order to find an explanation as to why the G-DYCORS𝑖𝑝 algorithm 
did not achieve the best result at 𝑅𝑒 = 800 we can examine the optimal 
actuators that were obtained with the different algorithms, shown in 
Fig. 7(c). In this figure, the actuators at their maximum amplitude are 
plotted. It is clear that the DYCORS, DYCORS𝑖𝑝 and G-DYCORS𝑖𝑝 algo-

rithms converged to a very similar solution in contrast to the G-DYCORS 
and the L-BFGS-B (not shown here) algorithms, which converged to a 
very different set of control parameters. This result suggests that the 
three algorithms arrived at a solution very close to the global minimum 
leaving little room for improvement. In addition, careful examination of 
the actuation profile shows that the profile is dominated by one actua-

tor placed at the suction side of the blade between the leading edge and 
the mid-chord point, and the frequency of this actuator (4.25 rad/s in 
the case of the DYCORS𝑖𝑝 and 4.43 rad/s in the case of the G-DYCORS𝑖𝑝) 
is roughly the same as the frequency of the instability (4.76 rad/s). This 
observation is also confirmed by looking at Fig. 7(d,e), which displays 
contours of the average total pressure field, the total pressure profile 
at the downstream measurement location and contours of the vorticity 
field at the last time step for the case with and without actuation (the 
actuation is plotted for the DYCORS𝑖𝑝 algorithm). These figures show 
that a reduction in the size of the low total pressure region around 
the blades is obtained by decreasing the intensity of the vortical struc-

tures that are being generated. Moreover, in the optimized case all the 
averaged wakes present the same profile whereas this is not the case 
for the case without actuation. Optimal actuators corresponding to DY-

CORS and G-DYCORS𝑖𝑝 present roughly the same flow fields as that of 
DYCORS𝑖𝑝 (not shown here).

4.3.2. 𝑅𝑒 = 2000
The convergence history at 𝑅𝑒 = 2000 as function of the iterations 
and as function of the computational cost is shown in Fig. 8(a,b). In 
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Fig. 7. Results at 𝑅𝑒 = 800.
this case, the G-DYCORS𝑖𝑝 algorithm is the one that obtains the best 
result. Again, both versions where the internal parameters are opti-

mized present better results than their counterparts without optimiza-

tion. Also, both gradient-enhanced versions improve the convergence 
rate of the derivative-free versions. When taking into account the com-

putational cost, the G-DYCORS𝑖𝑝 algorithm is converged after 150 iter-

ations.

The results of Table 4, suggest a considerable difference in the op-

timal actuators obtained with the G-DYCORS𝑖𝑝 algorithms compared to 
the rest at 𝑅𝑒 = 2000. However, Fig. 8(c) demonstrates that this differ-

ence is small. In fact, comparing the reduction in the total pressure loss 
obtained with the optimal actuation to that of the case without actu-

ation shows a smaller improvement at this Reynolds number than the 
rest. This result suggests that at this Reynolds number, the flow is not 
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very sensitive to this type of actuation on the blade surface, and that 
this form of actuation is not the best strategy to reduce the total pres-

sure loss. This can be deduced from the shape of the actuation profile as 
well, where no dominant actuator is selected, instead all the actuators 
have similar amplitudes.

The contours of the average total pressure, the total pressure pro-

file at the measurement location and the contours of the vorticity field 
are plotted in Fig. 8(d,e) for the case without actuation and for the op-

timal actuation obtained with the G-DYCORS𝑖𝑝 algorithm at 𝑅𝑒 = 2000. 
At this 𝑅𝑒 number the instability is developing at the trailing edge of 
the blades instead of at the wake as in the case of 𝑅𝑒 = 800. In this 
case there are no significant differences between the case without ac-

tuation and the optimized case as we already expected. Only in the 
wake of the 3 bottom blades the pressure contours show a small re-

duction in the size of the low total pressure region downstream of the 

cascade.
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Fig. 8. Results at 𝑅𝑒 = 2000.
4.3.3. 𝑅𝑒 = 4000
At 𝑅𝑒 = 4000, the optimal actuators obtained with the different al-

gorithms present significant differences as shown by Fig. 9(c), where 
the results of both stochastic optimizations are depicted. In the case 
of the DYCORS𝑖𝑝 algorithm, the profile shows a dominant actuator 
in the pressure side close to the mid-chord point, while no dominant 
actuator exists in the suction side. Nevertheless, the overall contribu-

tion to the suction side suggests that the actuators placed on this side 
also have a greater influence on the minimization of the total pres-

sure loss. In the case of the G-DYCORS𝑖𝑝 algorithm, both the suction 
side and the pressure side are dominated by an actuator placed close 
to the leading edge, whereas the rest of the profile has smaller val-

ues of the tangential velocity when compared to the optimal actuator 
obtained by the derivative-free version of the algorithm. Although the 
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DYCORS algorithm is ensured to achieve global convergence [34], the 
large difference between the two results suggests that in this case they 
followed paths to different local minima. This can be explained also by 
Fig. 9(a,b), where the convergence curves at this 𝑅𝑒 number do not 
end in a plateau shape, suggesting that the algorithms did not reach 
the global minimum and more iterations of the optimization algorithm 
are required to reach this point. Nevertheless, the convergence curves 
show that the G-DYCORS𝑖𝑝 is able to reach the same value of the objec-

tive function employing half the computational cost of the DYCORS𝑖𝑝
algorithm.

Considering Fig. 9(d,e), where the contours of the average total pres-

sure field, the total pressure profile at the measurement location and the 
contours of the vorticity field are illustrated for the case without actu-

ation and for the optimal actuation obtained with the G-DYCORS𝑖𝑝, it 
can be observed that the vortical structures are being generated on the 

suction side of the blades. This explains why the dominant actuators are 
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Fig. 9. Results at 𝑅𝑒 = 4000.
place so close to the leading edge in the optimal case. This way the ac-

tuation is capable of disturbing the shedding of these vortices and hence 
modifying the total pressure downstream of the blades. It can be seen 
that the shed vortices are not noticeably different qualitatively between 
the two cases, however the vortical structures in the wake show more 
variations, suggesting that the actuation is not changing the intensity 
of the vortices but their interaction. Again, the total pressure contours 
show larger low total pressure regions at the measurement location for 
the case without actuations although the differences are not as large as 
in the case at 𝑅𝑒 = 800.

5. Summary and conclusions

In this work we have developed an enhanced version of the 
derivative-free stochastic DYCORS algorithm by performing the opti-
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mization of the internal parameters of the kernel. An alternative version 
of the algorithm is also proposed by adding gradient information into 
the surrogate model to create a gradient-enhanced version of the origi-

nal algorithm, which may be useful whenever the gradient information 
can be obtained. These two modifications improve the accuracy of the 
surrogate model and therefore improve the convergence rate of the al-

gorithm. To optimize the internal parameters, the leave-one-out error 
is used in the case of the derivative-free version. In the case of the 
gradient-enhanced version, it has been found that the leave-one-out 
error presented in [33] does not perform satisfactorily and therefore 
an alternative method is proposed to optimize the values of the inter-

nal parameters based on the values of the gradients at the evaluated 
points. An implementation of both DYCORS and G-DYCORS algorithms 
together with brief documentation of the code is available at [57].

We have analyzed the performance of the stochastic algorithms and 

have compared it to the performance of the commonly used gradient-
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based algorithm L-BFGS-B at different flow regimes, from flows at 
roughly the critical Reynolds number to flows exhibiting chaotic be-

haviour. In all the cases, optimizing the internal parameters of the 
kernel has significantly improved the convergence rate of the algorithm. 
Moreover, the gradient-enhanced version has clearly outperformed the 
derivative-free version in two out of the three cases that have been ana-

lyzed. The comparison with the gradient-based algorithm L-BFGS-B has 
demonstrated that stochastic algorithms are able to achieve better re-

sults even at low 𝑅𝑒 numbers where the flow exhibits a purely periodic 
behaviour and where the objective function is not expected to present 
many local minima.

The convergence plots show that the gradient-enhanced version 
of the algorithm always presents a better convergence rate than the 
derivative-free version, even when the cost of evaluating the gradient 
has been factored in. However, at the lowest 𝑅𝑒 number studied, tak-

ing into account the computational cost of computing the gradient, both 
versions of the algorithm perform similarly. In order to compute the 
gradient information we have made use of the adjoint method, there-

fore the cost of performing a gradient evaluation is roughly the same 
as the cost of evaluating the objective function. Nevertheless, there ex-

ist methods that can improve the cost of gradient extraction e.g. the 
parallel-in-time method [58,59] where the linear equations are parti-

tioned by separating the homogeneous and inhomogeneous parts of the 
equations, resulting in a speeds-up of the computation. Reducing the 
computational cost of performing a gradient evaluation would improve 
the performance of the gradient-enhanced version of the algorithm com-

pared to the derivative-free version.

Finally, the gradient-enhanced version can still be improved by up-

dating the function employed to generate the trial points. Since in this 
case the gradient is evaluated at the best evaluated point, a skew-normal 
distribution can be used instead of a symmetric normal distribution to 
randomly generate the trial points by taking into account the direction 
where the gradient is pointing. This would accelerate convergence to 
local minima and therefore improve the overall performance of the al-

gorithm and will be investigated further in the future.
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Appendix A. Adjoint-based gradient computation

By linearizing the system of equations (22) about a steady baseflow, 
we obtain the following linear system of equations for the advancement 
of small perturbations 𝗾(

𝗔 𝗤
𝗤𝑇 𝟬

)(
𝗾𝑘+1

𝝀

)
=
(
(𝗕− 3

2𝗡)𝗾
𝑘 + 1

2𝗡(𝗾
𝑘−1)

𝟎

)
, (A.1)

where the matrix 𝗡 represents the linearized advection operator. This 
linearized system of equations is used to perform the gradients compu-

tation.

In order to obtain the desired derivatives of the objective function  , 
we make use of adjoint variables to efficiently compute the gradients by 
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solving a system of equations with a similar computational cost than the 
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cost of the forward simulation. By introducing the governing equations 
𝑅 as a constraint in the cost function and using Lagrange multipliers we 
can transform the minimization problem

min (𝐪0,… ,𝐪𝐾,𝐱) s.t. 𝑅(𝐪𝑖−2,𝐪𝑖−1,𝐪𝑖,𝐱) = 0 ∀ 𝑖 ∈ {1,… ,𝐾}, (A.2)

into an unconstrained problem

min(𝐪0,… ,𝐪𝐾,𝐱, 𝜆) =  (𝐪0,… ,𝐪𝐾,𝐱) −
𝐾∑
𝑖=1
𝜆𝑇
𝑖
𝑅(𝐪𝑖−2,𝐪𝑖−1,𝐪𝑖,𝐱),

(A.3)

where 𝜆𝑖 is the Lagrange multiplier corresponding to the residual of 
the 𝑖-th time step and  is the new cost function. We are interested in 
computing the gradients of the objective function with respect to the 
control parameters

d
d𝐱

= 𝜕
𝜕𝐱

+
𝑖=𝐾∑
𝑖=0

𝜕
𝜕𝐪𝑖

𝜕𝐪𝑖
𝜕𝐱
, (A.4)

which by employing the first-order optimality conditions can be rewrit-

ten as

d
d𝐱

= 𝜕
𝜕𝐱

−
𝑖=𝐾∑
𝑖=0

𝜆𝑇
𝑖

𝜕𝑅

𝜕𝐱
, (A.5)

where the Lagrange multipliers 𝜆𝑖 are obtained by solving the adjoint 
system backwards in time given by

𝜕
𝜕𝐪0

= 2𝜆𝑇1
𝜕𝑅(𝐪0,𝐪0,𝐪1,𝐱)

𝜕𝐪0
+ 𝜆𝑇2

𝜕𝑅(𝐪0,𝐪1,𝐪2,𝐱)
𝜕𝐪0

𝜕
𝜕𝐪1

= 𝜆𝑇1
𝜕𝑅(𝐪0,𝐪0,𝐪1,𝐱)

𝜕𝐪1
+ 𝜆𝑇2

𝜕𝑅(𝐪0,𝐪1,𝐪2,𝐱)
𝜕𝐪1

+ 𝜆𝑇3
𝜕𝑅(𝐪1,𝐪2,𝐪3,𝐱)

𝜕𝐪1

𝜕
𝜕𝐪𝑖

= 𝜆𝑇
𝑖

𝜕𝑅(𝐪𝑖−2,𝐪𝑖−1,𝐪𝑖,𝐱)
𝜕𝐪𝑖

+ 𝜆𝑇
𝑖+1
𝜕𝑅(𝐪𝑖−1,𝐪𝑖,𝐪𝑖+1,𝐱)

𝜕𝐪𝑖

+ 𝜆𝑇
𝑖+2
𝜕𝑅(𝐪𝑖,𝐪𝑖+1,𝐪𝑖+2,𝐱)

𝜕𝐪𝑖
∀ 𝑖 ∈ {2,… ,𝐾 − 2}

𝜕
𝜕𝐪𝐾−1 = 𝜆𝑇

𝐾−1
𝜕𝑅(𝐪𝐾−3,𝐪𝐾−2,𝐪𝐾−1,𝐱)

𝜕𝐪𝐾−1 + 𝜆𝑇
𝐾

𝜕𝑅(𝐪𝐾−2,𝐪𝐾−1,𝐪𝐾,𝐱)
𝜕𝐪𝐾−1

𝜕
𝜕𝐪𝐾

= 𝜆𝑇
𝐾

𝜕𝑅(𝐪𝐾−2,𝐪𝐾−1,𝐪𝐾,𝐱)
𝜕𝐪𝐾

.

(A.6)

Appendix B. Actuation details

The function 𝑓 that appears in Eq. (26) is a Gaussian-like function 
periodic over 2𝜋 given by

𝑓 (𝜃, 𝜃𝑖, 𝜎𝑖) = 𝑓1(𝜃,0)𝑓1(𝜃,𝜋)𝑓1(𝜃,2𝜋)
∞∑

𝑛=−∞

1√
2𝜋𝜎𝑖

𝑒

−1
2

(
𝜃 − 𝜃𝑖 − 2𝜋𝑛

𝜎𝑖

)2

= 𝑓1(𝜃,0)𝑓1(𝜃,𝜋)𝑓1(𝜃,2𝜋)
1
2𝜋
𝜗3

⎛⎜⎜⎜⎝
1
2
(
𝜃 − 𝜃𝑖

)
, 𝑒
−
𝜎2
𝑖

2
⎞⎟⎟⎟⎠ ,

(B.1)

where 𝜗3 is the Jacobi theta function. By considering this function we 
ensure that a continuous distribution of tangential velocity will be ob-

tained when applied to the blade surface. The function 𝑓1 damps the 
tangential velocity to 0 close to the leading and trailing edges in order 
to avoid problems related to the high curvature of these sections of the 
blade. It is given by,( (

(𝜃 − 𝛼)2
))
𝑓1(𝜃, 𝛼) = 1 − exp −
𝜎𝑑

, (B.2)
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where 𝜎𝑑 = 0.1 is chosen so that the damped region does not extend 
much throughout the blades surface.

Appendix C. Algorithms

This appendix presents the algorithms that have been previously 
mentioned in the paper. The Algorithm 2 describes the steps that need 
to be performed in order to generate and evaluate the new trial points. 
The Algorithm 3 provides the steps to select the next point to be evalu-

ated using the expensive function evaluation given the set of trial points 
already evaluated at the surrogate surface. Finally, the Algorithm 4

presents the steps that need to be carried out to update several pa-

rameters needed in the optimization procedure.

Algorithm 2: Function trial_points().

Input: Current iteration, 𝑛
Number of trial points, 𝑘
Standard deviation, 𝜎𝑛
Interpolant, 𝑠𝑛
Evaluated points, 𝑛

Coefficients of the surrogate model, 𝝀 and 𝐜

Result: Set of values of the trial points evaluated at the surrogate 
model, 𝑛

Compute probability of perturbing a coordinate: 𝑝pert = 𝜑(𝑛) using Eq. 
(16)

Select coordinates to perturb: pert =
{
𝑖 ∶𝑤𝑖 < 𝑝pert

}
, where 𝑤𝑖 for 

𝑖 = 1, … , 𝑑 are generated randomly

if pert = ∅ thenpert = {𝑗} where 𝑗 is selected randomly from {1,… , 𝑑}
end

Generate trial points: y𝑛,𝑗 = 𝐱best + z𝑗 for 𝑗 = 1, … , 𝑘, where 
z𝑖
𝑗
= 0 ∀ 𝑖 ∉ pert and a random number from the normal distribution 

 (0, 𝜎2
𝑛
)

Ensure trial points are in the domain:

if y𝑛,𝑗 ∉ then
Replace y𝑛,𝑗 by closest point in the boundary 𝜕

end

Evaluate trial points: Compute 𝑛 = 𝑠𝑛(𝐲𝑛,𝑗 , 𝑛, 𝝀, c) for 𝑗 = 1, … , 𝑘
where 𝑠𝑛 is given by Eqs. (2) and (5)
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