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Abstract— A genetic algorithm (GA) is hybridized with an
artificial immune system (AIS) as an alternative to tackle
constrained optimization problems in engineering. The AIS is
inspired in the clonal selection principle and is embedded into a
standard GA search engine in order to help move the population
into the feasible region. The procedure is applied to mechanical
engineering problems available in the literature and compared
to other alternative techniques.

I. INTRODUCTION

Evolutionary algorithms (EAs), which can be readily
applied to unconstrained optimization problems, must be
equipped with an additional constraint handling procedure
every time that the constraints cannot be automatically sat-
isfied by all candidate solutions in the population.

The techniques for handling constraints within EAs can
be direct (feasible or interior), when only feasible elements
are considered, or indirect (exterior), when both feasible and
infeasible elements are used during the search process.

Direct techniques comprise: a) special closed genetic
operators[1], b) special decoders[2], c) repair techniques[3],
and d) “death penalty”.

Direct techniques are problem dependent (with the excep-
tion of the “death penalty”) and actually of extremely reduced
practical applicability.

Indirect techniques include: a) the use of Lagrange
multipliers[4], [5], b) combining fitness and constraint vi-
olation in a multi-objective optimization setting[6], [7], c)
the use of special selection techniques[8], d) assigning to
any infeasible offspring a very low fitness value[9], and e)
penalty techniques[10], [11], [12], [13], [14], [15], [16].

For other constraint handling methods in evolutionary
computation see [1], [17], [18], [2], [19], [20], [21], [22],
references therein, and the still growing literature.

However, of particular interest here is the application of
ideas from artificial immune systems (AIS) in constrained
optimization problems. A hybrid Genetic Algorithm is pro-
posed to solve constrained optimization problems in mechan-
ical engineering. An additional technique, called Clearing, is
used in order to improve the quality of the results obtained by
the proposed hybrid GA. This paper is organized as follows.
The formulation of the constrained optimization problem
is described in Section II, previous works using AIS are

presented in Section III. The proposed technique is given in
Section IV, numerical experiments are discussed in Section
V, and, finally, Section VI presents some conclusions.

II. CONSTRAINED OPTIMIZATION PROBLEMS

A standard constrained optimization problem in Rn can
be thought of as the minimization of a given objective
function f(x), where x ∈ Rn is the vector of design/decision
variables, subject to inequality constraints gp(x) ≥ 0, p =
1, 2, . . . , p̄ as well as equality constraints hq(x) = 0, q =
1, 2, . . . , q̄. Additionally, the variables are usually subject to
bounds xL

i ≤ xi ≤ xU
i which are trivially enforced in a

GA and need not be considered here. Very often the design
variables are further constrained to belong to a given finite
set of pre-defined values, as in design optimization problems
when parts must be selected from commercially available
types. A mixed discrete-continuous constrained optimization
problem arises. For such optimization problems arising from
multidisciplinary design tasks, the constraints are in fact a
complex implicit function of the design variables, and the
check for feasibility requires an expensive computational
simulation. Constraint handling techniques which do not
require the explicit form of the constraints and do not
require additional objective function evaluations are thus
most valuable.

III. PREVIOUS WORK USING AIS

Not many papers can be found where AIS are used to
solve constrained optimization problems. Those of particular
interest here will be briefly considered in the following.

About ten years ago Hajela and co-workers[23], [24], [25],
[26] proposed the idea of using another GA embedded into
the original one aiming at increasing the similarity (or re-
ducing the distance) between infeasible elements (playing the
role of antibodies) and feasible ones (antigens). The inner GA
uses as fitness function a genotypical (Hamming) distance in
order to evolve better (hopefully feasible) antibodies. In this
way there is no need for additional expensive evaluations
of the original fitness function of the problem which only
happen during the search performed by the external GA. The
internal GA uses a relatively inexpensive fitness based on
Hamming distance calculations.
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More recently, Coello and Cruz-Cortés[27] proposed an
extension of Hajela’s algorithm, together with a parallel
version, and tested them in a larger problem set.

A different approach was followed by Cruz-Cortés et
al.[28] where an existing AIS (CLONALG) (see [29], [30])
already used for pattern recognition problems and mul-
timodal optimization is modified in order to deal with
constrained optimization problems. Binary as well as real
representations were considered. The results for the real
coded version of CLONALG were disappointing, leading
the authors to modify the mutation operator originally used,
and also to remove the self-adaptation mechanism suggested
in [30].

IV. THE PROPOSED TECHNIQUE

In a previous work[31], following the idea of Hajela and
co-workers, a hybrid GA was proposed where an AIS is
called to help the GA in increasing the number of feasible
individuals in the population. However, instead of embedding
another GA into the main search cycle, a simple technique,
inspired in the clonal selection principle, is used inside the
GA cycle. The proposed hybrid AIS-GA for constrained
optimization consists in an outer (GA) search loop where
the current population is checked for constraint violation
and then divided into feasible (antigens) and infeasible indi-
viduals (antibodies). If there are no feasible individuals, the
two better infeasible ones (those with the lowest constraint
violation) are moved to the antigen population. The number
of copies of better infeasible individuals can be set by the
user. In the following, the AIS is introduced as an inner loop
where antibodies are first cloned and then mutated. Next,
the distances (affinities) between antibodies and antigens
are computed. Those with higher affinity (smaller sum of
distances) are selected thus defining the new antibodies
(closer to the feasible region). This (AIS) cycle is repeated a
number of times. The resulting antibody population is then
passed to the GA with the same fitness already calculated.
The selection operation is then performed in order to apply
recombination and mutation operators to the selected parents
producing a new population and finishing the external (GA)
loop.

The selection procedure in the GA consists in binary
tournaments where each individual is selected once and
its opponent is randomly draw, with replacement, from the
population. The rules of the tournament are: (i) any feasible
individual is preferred to any infeasible one, (ii) between
two feasible individuals, the one with the higher fitness value
is chosen, and (iii) between two infeasible individuals, the
one with the smaller constraint violation is chosen. It should
be noted that here the affinity is computed from the sum
of genotypical distances between individuals, employing the
standard Hamming distance.

A pseudo-code for the proposed hybrid is given in Algo-
rithm 1 and some auxiliary functions in Algorithms 2 and 3.

Petrowski’s clearing procedure [32], originally used for
multimodal problems, is a niching method inspired by the
principle of sharing limited resources within subpopulations

Algorithm 1 The Hybrid GA Algorithm
1: procedure HYBRIDGA(nGenGA,nIterAIS)
2: COMPUTEFITNESSVIOLATION(population)
3: for i = 1 : nGenerationsGA do
4: DIVIDE(population, antibodies, antigens)
5: for j = 1 : nIterationsAIS do
6: CLONE(antibodies, temp)
7: MUTATION(temp)
8: COMPUTEDISTANCE(antigens, temp)
9: SELECTBETTER(temp, antibodies)

10: end for
11: UNION(antibodies, antigens, population)
12: TOURNAMENTSELECTION(population, temp)
13: CROSSOVER(temp)
14: MUTATION(temp)
15: COMPUTEFITNESSVIOLATION(temp)
16: CHANGEPOPULATION(population, temp)
17: end for
18: end procedure

Algorithm 2 Auxiliary Functions

1: function CLONE(antibodies, temp)
2: temp ← antibodies
3: for i = 1 : numClones do
4: for j = 1 : antibodies.size do
5: ADD(temp, antibodies[j])
6: end for
7: end for
8: end function

9: function SELECTBETTER(temp, antibodies)
10: CLEAR(antibodies)
11: for i = 1 : temp.size do
12: ADD(tmp, temp[j])
13: if imodnumClones = 0 then
14: GETBEST(tmp, antibody)
15: ADD(antibodies, antibody)
16: CLEAR(tmp)
17: end if
18: end for
19: end function

20: function TOURNAMENTSELECTION(population, temp)
21: CLEAR(temp)
22: for i = 1 : population.size do
23: RAMDOM(r)
24: GETBEST(population[i], population[r], best)
25: ADD(temp, best)
26: end for
27: end function
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Algorithm 3 changePopulation

1: function CHANGEPOPULATIONC(population, temp)
2: UNION(population, temp, tmp)
3: SORT(tmp)
4: for i = 1 : tmp.size do
5: for j = i + 1 : tmp.size do
6: if not ISCLEARING(tmp[j]) then
7: CALCDISTANCE(tmp[i], tmp[j], d)
8: if d < criticalDistance then
9: SETCLEAR(tmp[j])

10: end if
11: end if
12: end for
13: end for
14: CLEAR(population)
15: for i = 1 : tmp.size do
16: if not ISCLEARING(tmp[i]) then
17: if temp.size! = population.size then
18: ADD(population, tmp[i])
19: end if
20: end if
21: end for
22: SORT(temp)
23: i ← 1
24: while temp.size! = population.size do
25: if ISCLEARING(tmp[i]) then
26: ADD(population, temp[i])
27: i ← i + 1
28: end if
29: end while
30: end function

of individuals characterized by some similarities [33]. The
clearing procedure leaves those resources to the better in-
dividuals of each subpopulation. According to [33], that
procedure is normally applied after evaluating the fitness of
individuals and before applying the selection operator. The
individuals are sorted from best to worst and all solutions
having a critical distance from each pivot solution in the
population have their fitness values set to zero. The pivot
is the best individual not cleared in the sequence. This
procedure is continued until all solutions are considered, that
is either to be a pivot or to be cleared.

Differently from [33], the clearing procedure is applied
here when a new population is substituted for the previous
one. A new set of individuals is created from the union
of both populations (previous and next populations). The
procedure of clearing is then executed on that union. The
fitness values are not set to zero as in [33]. Instead, the
individuals cleared are tagged. The new population is made
up of non-cleared individuals and, if necessary, completed
with the best cleared individuals generated from crossover
and mutation.

In [33], the clearing procedure when applied alone did
not produce good results. In order to keep the niches the

crossover operator is applied here to similar individuals.
The remaining steps of the technique proposed here are

not changed.

V. NUMERICAL EXPERIMENTS

In order to investigate the performance of the proposed
algorithm, six mechanical engineering optimization problems
often discussed in the literature are considered in the follow-
ing. For the AIS-GA presented in this paper the numerical
experiments use a population size equal to 20, a binary Gray
code with 50 bits for each continuous variable, a crossover
probability equal to 1, a mutation rate of 0.02, elitism (the
2 best individuals are copied to the next generation), a
maximum of 20 iterations (nIterationsAIS = 20) of the
AIS, the number of clones set to 3 (numClones = 3),
and, finally, the radius (criticalDistance) of the clearing
procedure (when it is applied) was set to 10% of the length
of the chromosome.

A. The Tension/Compression String Design

This example corresponds to the minimization of the
volume V of a coil spring, depicted in the Figure 1, under
a constant tension/compression load. There are three design
variables to be considered: The number x1 = N of active
coils of the spring, the winding diameter x2 = D and
the wire diameter x3 = d. The volume of the coil to be
minimized is written as [34]:

V (x) = (x1 + 2)x2x
2
3

and is subject to the constraints

g1(x) = 1 − x3
2x1

71785x4
3

≤ 0

g2(x) =
4x2

2 − x3x2

12566(x2x3
3 − x4

3)
+

1

5108x2
3

≤ 0

g3(x) = 1 − 140.45x3

x2
2x1

≤ 0

g4(x) =
x2 + x3

1.5
− 1 ≤ 0

where

2 ≤ x1 ≤ 15 0.25 ≤ x2 ≤ 1.3 0.05 ≤ x3 ≤ 2

A comparison of results is provided in the Table I where the
best result is found by the AIS-GA with clearing, presenting
a final volume equal to 0.012666. The Table II shows the
values found for the design variables and constraints corre-
sponding to the best solution for the Tension/Compression
String design. The reference [34] did not present the final
values of the design variables for this problem. The number
of function evaluations was set equal to 36,000 for all
experiments.
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Free
Length

d

Displacement

D

Fig. 1. The Tension/Compression String

TABLE I

VALUES FOUND FOR TENSION/COMPRESSION STRING DESIGN WHERE

THE SUPERSCRIPT (C) DENOTES THE AIS-GA WITH CLEARING

Best Average Worst
Ref. [34] 0.012688 0.013014 0.017037
AIS-GA 0.012668 0.013481 0.016155

AIS-GAC
0.012666 0.012974 0.013880

B. The Speed Reducer design

The objective of this problem is to minimize the weight
W of the speed reducer [34] shown in the Figure 2. The
design variables are the face width (x1 = b), the module of
teeth (x2 = m), the number of teeth on pinion (x3 = n),
the length of the shaft 1 between the bearings (x4 = l1),
the length of the shaft 2 between the bearings (x5 = l2), the
diameter of the shaft 1 (x6 = d1), and, finally, the diameter
of the shaft 2 (x7 = d2). The third variable is integer and all
the others are continuous. The constraints include limitations
on the bending and surface stress of the gear teeth, transverse
deflections of the shafts 1 and 2 generated by the transmitted
force, and, finally, the stress in the shafts 1 and 2. The weight

TABLE II

VALUES FOUND FOR THE DESIGN VARIABLES AND CONSTRAINTS FOR

THE TENSION/COMPRESSION STRING DESIGN WHERE nfe DENOTES

THE TOTAL NUMBER OF FUNCTION EVALUATIONS

Var. AIS-GA AIS-GAC

x1 11.852177 11.329555
x2 0.34747463 0.35603234
x3 0.051301897 0.051660806
g1 −0.00000012 −0.000006437
g2 −0.00000047 −0.000013709
g3 −4.03513200 −4.052324300
g4 −0.73414900 −0.728204600

V 0.012668 0.012666

nfe 36,000 36,000

of the speed reducer, to be minimized, is given by

W (x) = 0.7854x1x
2
2

(
3.3333x2

3 + 14.9334x3 − 43.0934
)

−1.508x1

(
x2

6 + x2
7

)
+ 7.4777

(
x3

6 + x3
7

)
+0.7854

(
x4x

2
6 + x5x

2
7

)
subject to

g1(x) = 27x−1
1 x−2

2 x−1
3 ≤ 1

g2(x) = 397.5x−1
1 x−2

2 x−2
3 ≤ 1

g3(x) = 1.93x−1
2 x−1

3 x3
4x

−4
6 ≤ 1

g4(x) = 1.93x−1
2 x−1

3 x3
5x

−4
7 ≤ 1

g5(x) =
1

0.1x3
6

[(
745x4

x2x3

)2

+ {16.9} 106

]0.5

≤ 1100

g6(x) =
1

0.1x3
7

[(
745x5

x2x3

)2

+ (157.5) 106

]0.5

≤ 850

g7(x) = x2x3 ≤ 40

g8(x) = x1/x2 ≥ 5

g9(x) = x1/x2 ≤ 12

g10(x) = (1.5x6 + 1.9) x−1
4 ≤ 1

g11(x) = (1.1x7 + 1.9) x−1
5 ≤ 1

2.6 ≤ x1 ≤ 3.6 0.7 ≤ x2 ≤ 0.8 17 ≤ x3 ≤ 28

7.3 ≤ x4 ≤ 8.3 7.8 ≤ x5 ≤ 8.3 2.9 ≤ x6 ≤ 3.9

The Table III presents a comparison of results found by the
proposed algorithm and those given in the references [34]
and [27]. The AIS-GA and AIS-GA with clearing found
essentially the same values presented in the reference [27],
and are better than those found in [34]. Furthermore, the AIS-
GA used 36,000 functions evaluations (as in [34]), whereas
the results presented in [27] were reached using 150,000
function evaluations.

Table IV presents the best final values of the design vari-
ables and constraints for the Speed Reducer design. In [27]
the result for the best weight is given as 2994.3419. However,
using the design variables presented in that reference, the
value of the weight found is equal to 2994.4717 marked with
an ∗ in Table III. The weight found by the AIS-GAC is equal
to 2994.4712.

1l

l2
z1 z2 d2

d1

Fig. 2. The Speed Reducer

C. The Welded Beam design

This test corresponds to the design of the welded beam
depicted in the Figure 3. The design variables are {h, l, t, b},
with bounds 0.125 ≤ h ≤ 10, and 0.1 ≤ l, t, b ≤ 10.
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TABLE III

VALUES FOUND FOR THE SPEED REDUCER DESIGN

nfe Best Average Worst
Ref. [34] 36, 000 3025.0051 3088.7778 3078.5918
AIS-GA 36, 000 2994.4720 2994.4836 2994.5090

AIS-GAC
36, 000 2994.4712 2994.4712 2994.4712

Ref. [27] 150, 000 2994.3419 2994.3472 2994.3768

AIS-GA 150, 000 2994.4712 2994.4712 2994.4712

AIS-GAC
150, 000 2994.4712 2994.4712 2994.4712

Ref. [27]∗ 150, 000 2994.4717 − −

TABLE IV

VALUES FOUND FOR THE SPEED REDUCER DESIGN

Var Ref. [34] Ref. [27] AIS-GA AIS-GAC

x1 3.506163 3.500000 3.500001 3.5
x2 0.700831 0.700000 0.700000 0.7
x3 17.0 17.0 17.0 17.0
x4 7.460181 7.300008 7.300017 7.3000035
x5 7.962143 7.715322 7.715326 7.7153225
x6 3.362900 3.350215 3.350216 3.3502147
x7 5.308949 5.286655 5.286654 5.2866545
g1 -0.077734 -0.07391524 -0.07391554 -0.07391524
g2 -0.201305 -0.19799852 -0.19799876 -0.19799852
g3 -0.474119 -0.49917084 -0.49916983 -0.49917156
g4 -0.897068 -0.90464383 -0.90464365 -0.90464383
g5 -0.011021 -2.3×10

−7 -1.55×10
−6 -1.19×10

−7

g6 -0.012500 -2.9×10
−7 0.00000000 0.00000000

g7 -0.702147 -0.70250000 -0.70250000 -0.70250000
g8 -0.000573 0.00000000 -2.9×10

−7 0.00000000
g9 -0.583095 -0.5833333 -0.58333320 -0.58333330
g10 -0.069144 -0.051326692 -0.05132753 -0.05132616
g11 -0.027920 -0.00000018 -0.00000077 -0.00000036
W 3025.0051 2994.3419 2994.4720 2994.4712
nfe 36,000 150,000 36,000 36,000

The objective function to be minimized is the cost C of
the beam given as:

C(h, l, t, b) = 1.10471h2l + 0.04811tb(14.0 + l)

subject to

g1(τ) = 13, 600 − τ ≥ 0 g2(σ) = 30, 000 − σ ≥ 0

g3(b, h) = b − h ≥ 0 g4(Pc) = Pc − 6, 000 ≥ 0

g5(δ) = 0.25 − δ ≥ 0

The expressions for τ , σ, Pc, and δ are given by:

τ =
√

(τ ′)2 + (τ ′′)2 + lτ ′τ ′′/α

α =
√

0.25(l2 + (h + t)2) σ =
504000

t2b
Pc = 64746.022(1 − 0.0282346t)tb3

δ =
2.1952

t3b
τ

′

=
6000√

2hl

τ
′′

=
6000(14 + 0.5l)α

2(0.707hl(l2/12 + 0.25(h + t)2))

The Table V shows a comparison of results with the
algorithms proposed here and a genetic algorithm approach
using an adaptive penalty method presented in [35]. The best
results found correspond to the AIS-GA with clearing. The

l h

t

F

b

Fig. 3. The Welded Beam

Table VI shows the design variables and constraint values
corresponding to the best solution found by each technique.
The number of function evaluations was set equal to 320,000.

TABLE V

VALUES FOUND FOR THE COST OF THE WELDED BEAM DESIGN.

Best Average Worst
Ref. [35] 2.38159 2.41718 2.95533
AIS-GA 2.38125 2.59303 3.23815

AIS-GAC
2.38122 2.38992 2.41391

TABLE VI

RESULTS FOR THE DESIGN VARIABLES AND CONSTRAINTS WITH

RESPECT TO THE BEST SOLUTIONS OF THE WELDED BEAM DESIGN.

Var. Ref. [35] AIS-GA AIS-GAC

h 0.2442949 0.24432427 0.24438575
l 6.2116738 6.2201996 6.2183037
t 8.3015486 8.291464 8.291165
b 0.2443003 0.24436942 0.24438748
g1 0.0004447 0.000000000 0.001953125
g2 64.378068 0.001953125 0.056640625
g3 0.0000054 0.000045150 0.000001728
g4 0.0002553 0.029785156 1.210937500
g5 0.2342937 0.234240830 0.234240280
Cost 2.38159 2.381246 2.3812175
nfe 320,000 320,000 320,000

D. The Pressure Vessel design

This problem, often studied in the literature [36], [37],
[38], [39], corresponds to the weight minimization of a
cylindrical pressure vessel with two spherical heads as shown
in Figure 4. The objective function involves four variables:
the thickness of the pressure vessel (Ts), the thickness of
the head (Th), the inner radius of the vessel (R) and the
length of the cylindrical component (L). Since there are two
discrete variables (Ts and Th) and two continuous variables
(R and L), one has a nonlinearly constrained mixed discrete-
continuous optimization problem. The bounds of the design
variables are 0.0625 ≤ Ts, Th ≤ 5 (in constant steps of
0.0625) and 10 ≤ R,L ≤ 200. The design variables are
given in inches and the weight is written as:

W (Ts, Th, R, L) = 0, 6224TsThR + 1.7781ThR2 +

3.1661T 2
s L + 19.84T 2

s R
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to be minimized subject to the constraints

g1(Ts, R) = Ts − 0.0193R ≥ 0

g2(Th, R) = Th − 0.00954R ≥ 0

g3(R,L) = πR2L + 4/3πR3 − 1, 296, 000 ≥ 0

g4(L) = −L + 240 ≥ 0

The first two constraints establish a lower bound to the
ratios Ts/R and Th/R, respectively. The third constraint
corresponds to a lower bound for the volume of the vessel
and the last one to an upper bound for the length of the
cylindrical component. The Table VII makes a comparison

R

L
ST

R

hT

Fig. 4. The Pressure Vessel.

of results obtained with the algorithms proposed in this paper,
and some results from the literature. The algorithms AIS-GA
in this paper and the GA in [35] used 80,000 against 150,000
function evaluations in [27]. The best solution was found by
the AIS-GA with clearing and corresponds to a final weight
of 6060.138. The Table VIII shows the details of the final
best solutions.

TABLE VII

VALUES OF THE WEIGHT FOUND FOR THE PRESSURE VESSEL DESIGN.

Best Average Worst
Ref. [27] 6061.123 6734.085 7368.060
Ref. [35] 6060.188 6311.766 6838.939
AIS-GA 6060.368 6743.872 7546.750
AIS-GAC 6060.138 6385.942 6845.496

TABLE VIII

DESIGN VARIABLES, CONSTRAINTS AND WEIGHT FOUND FOR THE

PRESSURE VESSEL DESIGN

Var. Ref. [27] Ref. [35] AIS-GA AIS-GAC

Ts 0.8125 0.8125 0.8125 0.8125
Th 0.4375 0.4375 0.4375 0.4375
R 42.086994 42.0946558 42.093082 42.094967
L 176.779128 176.684062 176.70308 176.67972
g1 0.000221 0.000073 0.0001035 0.000007
g2 0.035990 0.035917 0.0359320 0.035914
g3 3.219817 2.929000 0.1562500 0.0625
g4 63.220872 63.315938 63.296920 63.320282
W 6061.1229 6060.187934 6060.3677 6060.138
nfe 150,000 80,000 80,000 80,000

E. The Cantilever Beam design

This test problem[40] corresponds to the minimization of
the volume of the cantilever beam shown in the Figure 5
where the load P is equal to 50000 N. There are 10 design

variables corresponding to the height (Hi) and width (Bi) of
the rectangular cross-section of each of the five constant steps
shown in the Figure 5. The variables B1 and H1 are integer,
B2 and B3 assume discrete values to be chosen from the set
{2.4, 2.6, 2.8, 3.1}, H2 and H3 are discrete and chosen from
the set {45.0, 50.0, 55.0, 60.0} and, finally, B4, H4, B5, and
H5 are continuous. The variables are given in centimeters
and the Young’s modulus of the material is equal to 200
GPa. The volume of the beam, to be minimized, is given by

V (Hi, Bi) = 100

5∑
i=1

HiBi

subject to

gi(Hi, Bi) = σi ≤ 14000N/cm2 i = 1, . . . , 5

gi+5(Hi, Bi) = Hi/Bi ≤ 20 i = 1, . . . , 5

g11(Hi, Bi) = δ ≤ 2.7cm

where δ is the tip deflection of the beam in the vertical
direction. The Table IX presents some results found in the

500 cm

1 2 43 5

P

Hi

B i

Fig. 5. The Cantilever Beam

literature and those found by using the algorithms proposed
in this paper. An extended set of results for this problem can
be found in [35]. The number of function evaluations was set
equal to 35,000 for all experiments except in the Ref. [40]
that used 10,000 function evaluations at each three levels of
their GAOS algorithm. The AIS-GA without clearing found
a better solution (65559.6) than the AIS-GA with clearing in
this example. However, the GA proposed in [35] reaches a
better result equal to 64698.6. The Table X shows the details
of the final best solutions.

TABLE IX

VOLUME FOUND FOR THE CANTILEVER BEAM DESIGN

nfe Best Average Worst
Ref. [40] 10, 000 64815 n.a. n.a.
Ref. [35] 35, 000 64698.56 68107.046 73931.359

AIS-GA 35, 000 65559.60 70857.12 77272.78

AIS-GAC
35, 000 66533.47 71821.69 76852.86

F. The Ten-Bar Truss design

This is the well known test problem corresponding to the
weight minimization of the ten-bar truss shown in the Figure
6. The constraints involve the stress in each member and
the displacements at the nodes. The design variables are
the cross-sectional areas of the bars (Ai, i = 1, 10). The
allowable stress is limited to ± 25ksi and the displacements
are limited to 2 in, in the x and y directions. The density
of the material is 0.1 lb/in3, Young’s modulus is E = 104
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TABLE X

VALUES FOUND FOR THE CANTILEVER BEAM DESIGN.

Var. Ref. [40] Ref. [35] AIS-GA AIS-GAC

B1 3 3 3 3
B2 3.1 3.1 3.1 3.1
B3 2.6 2.6 2.8 2.6
B4 2.300 2.2894 2.2347884 2.3107138
B5 1.800 1.7931 2.0038407 2.2254148
H1 60 60 60 60
H2 55 55 55 60
H3 50 50 50 50
H4 45.50 45.6256 44.39452 43.18571
H5 35.00 34.5931 32.878708 31.250282
g1 13888.89 13888.89 13888.889 13888.889
g2 12796.59 12796.59 12796.588 10752.688
g3 13846.15 13846.15 12857.143 13846.154
g4 12600.87 12589.61 13622.479 13922.748
g5 13605.44 13980.98 13849.324 13803.919
g6 20.00 20.00 20.0 20.0
g7 17.74 17.74 17.741936 19.35484
g8 19.23 19.23 17.857143 19.23077
g9 19.7826 19.9289 19.8652 18.689339
g10 19.4444 19.2919 16.407845 14.042453
g11 2.6960 2.6999 2.6999998 2.601907
V 64815 64698.56 65559.6 66533.47
nfe 10,000 35,000 35,000 35,000

ksi, and vertical downward loads of 100 kips are applied
at nodes 2 and 4. Two cases are analyzed: discrete and

360 in 360 in

360 in

5

46

5

8

7 9
6

10

21 3 1

2
43

P P

Fig. 6. The Ten-Bar Truss

continuous variables. For the discrete case the values of the
cross-sectional areas (in2) are chosen from the set S with
32 options: 1.62, 1.80, 1.99, 2.13, 2.38, 2.62, 2.93, 3.13,
3.38, 3.47, 3.55, 3.63, 3.88, 4.22, 4.49, 4.59, 4.80, 4.97,
5.12, 5.74, 7.97, 11.50, 13.50, 14.20, 15.50, 16.90, 18.80,
19.90, 22.00, 26.50, 30.00, 33.50. For the continuous case
the minimum cross sectional area is equal to 0.1 in2. The
Table XI presents the values found for the final weight of the
Ten-bar Truss design considering the discrete case and using
90,000 function evaluations. The best solutions (5490.738)
was found in the reference [35]. The Table XIII presents
the values for the Ten-bar Truss design for the continuous
case where the AIS-GA found the best solution equal to
5062.675 considering 280,000 objective function evaluations.
An extended discussion of results for this problem can be
found in [35]. The Tables XII and XIV show the final values
of the design variables for the discrete and continuous cases,
respectively.

TABLE XI

VALUES OF WEIGHT FOR THE TEN-BAR TRUSS – DISCRETE CASE

Best Average Worst
Ref. [35] 5490.74 5545.48 5567.84

AIS-GA 5539.243 5754.969 6790.8936
AIS-GAc

5528.087 5723.7837 6239.992

TABLE XII

VALUES FOUND FOR THE TEN-BAR TRUSS DESIGN – DISCRETE CASE.

Var. Ref. [35] AIS-GA AIS-GAC

1 33.50 33.50 33.5
2 1.62 1.8 1.62
3 22.90 26.5 22.0
4 14.20 15.50 14.2
5 1.62 1.62 1.62
6 1.62 2.13 1.62
7 7.97 7.97 5.74
8 22.90 19.9 26.5
9 22.00 22.0 22.0
10 1.62 1.62 1.62
W 5490.738 5539.243 5528.087
nfe 90,000 90,000 90,000

VI. CONCLUSIONS

A genetic algorithm hybridized with an artificial immune
system was proposed and tested in a well known set of
mixed constrained optimization problems in mechanical en-
gineering. A comparison with some alternative approaches
was performed and the AIS-GA provided competitive re-
sults in all experiments performed. One can observe that
the proposed algorithm performed very well in problems
presenting continuous design variables, reaches good results
in problems with mixed design variables and, finally, shows
a decrease in performance for problems with discrete design
variables. Overall, the best performance among AIS inspired
procedures was delivered by the AIS-GA hybrid proposed
here. The introduction of a clearing procedure improved the
quality of the results in almost all problems tested. The
proposed hybrid can also be applied to other engineering
problems and should be tested in larger mixed constrained
optimization problems in mechanical engineering.
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